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MIRRORING AND INTERLEAVING IN THE

PAPERFOLDING SEQUENCE

Bruce Bates, Martin Bunder, Keith Tognetti

Three equivalent methods of generating the paperfolding sequence are pre-
sented as well as a categorisation of runs of identical terms. We find all
repeated subsequences, the largest repeated subsequences and the spacing
of singles, doubles and triples throughout the sequence. The paperfolding
sequence is shown to have links to the Binary Reflected Gray Code and the
Stern-Brocot tree.

1. INTRODUCTION

Take a sheet of paper and fold it, right over left, n times. When the paper is
unfolded we see a sequence of 2n−1 creases, some downward and some upward. An
analysis of this sequence first appeared in Davis and Knuth [1], who labeled these
creases D and U . We will label them 1 and 0 as do Dekking et al [8]. Prodinger
and Urbanek [14] label them 0 and 1 while Allouche and Bousquet-Mélou

[4] allow both 1 and 0 and 0 and 1.

This sequence of 2n − 1 1s and 0s we call Sn as do Davis and Knuth [1]
with their sequence of 2n − 1 Ds and Us. The middle element of Sn is always a 1
(a D for Davis and Knuth); Sn−1 appears to the left of this 1 and SRn−1 (obtained
from Sn−1 by reversing the order and swapping 0s and 1s – a notation adopted by
Lothaire [10, p. 526], Mendès France and Shallit [12] and Prodinger and
Urbanek [14]) appears to the right.

So as in Davis and Knuth [1].

Theorem 1. Sn = Sn−1 1 SRn−1.

We use S for lim
i→∞

Si and call this the paperfolding sequence.

2000 Mathematics Subject Classification. 11B37, 11B83.
Keywords and Phrases. Paperfolding, Binary Reflected Gray Code, Stern-Brocot tree.

96



Mirroring and interleaving in the paperfolding sequence 97

Mendès France and Shallit [12] give four different methods for repre-
senting the sequence. One of their representations, called the Dragon Curve in
Davis and Knuth [1], is a sequence of lattice points obtained by unfolding the
paper so that all the folds are 900 and then looking at the edge of the paper. Their
third representation has R for 1 and L for 0.

An important concept, similar to perfect shuffling, is useful in understanding
paperfolding. It is called interleaving.

Definition 1. (Interleave Operator). The interleave operator # acting on the two
sequences U = u1, u2, . . . , uk and V = v1, v2, . . . , vn where k > n, generates the
following interleaved sequence:

U#V = u1, . . . , up, v1, up+1, . . . , u2p, v2, u2p+1, . . . , unp, vn, unp+1, . . . , uk

where p =
⌊

k

n+ 1

⌋
.

Example 1. Let U = u1, u2, . . . , un+1 and V = v1, v2, . . . , vn. Then

U#V = u1, v1, u2, v2, . . . , un, vn, un+1.

Note that Definition 1 requires the two sequences to have different parity. Accord-
ingly, # does not define a perfect shuffle although there are obvious similarities.

Davis and Knuth [1] and Prodinger and Urbanek [14] have yet another
method for constructing Sn and S. This can be expressed through interleaving, as
follows.

Theorem 2. Let A2k = (10)
k
that is, 1010 · · · 10 with k 10s, then

Sn = A2n−1#A2n−2# · · ·#A2#1,
= A2n−1#Sn−1.

Allouche and Bacher [2] use Toeplitz transformations to construct Sn in essen-
tially the same way. Dekking et al. [8] have a similar result.

The following theorem appears in various forms in the literature, notably
Davis and Knuth [1] and Dekking et al. [8]. Our variant arises from using 1s
and 0s in S. In what follows fi is the ith element in S.

Theorem 3. For i ≥ 1,
i) f2i = fi and

ii) f2i−1 =
1− (−1)i

2
.

Proof. By Theorem 2,
i) the sequence of successive even entries in Sn is Sn−1, establishing i),
ii) the sequence of successive odd entries in Sn is A2n−1 , establishing ii). ¤

The following result, though similar to other formulations (for example, Al-
louche and Bousquet-Mélou [3]), is compact and yields an interesting corollary.
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Theorem 4. For h, k ≥ 0,

fi =

{
1, if i = 2k(4h+ 1)
0, if i = 2k(4h+ 3) .

Proof. We prove this by induction on n.

We have S1 = 1, so f1 = 1 = 2
k(4h+ 1) where k = h = 0.

Suppose the theorem is true for Sn−1. By Theorem 2,

Sn−1 = f2f4 . . . f2n−2.

That is, the ith entry in Sn−1 becomes the 2i
th entry in Sn. Also

A2n−1 = 1010 · · · 10,
= f1f3f5 . . . f2n−1.

That is, for 0 ≤ h ≤ 2n−2 − 1, f4h+1 = 1 and f4h+3 = 0. ¤

Corollary 1. For k ≥ 0, r ≥ 0, fi = 1 + r mod 2 where i = 2k(2r + 1).

Proof. From Theorem 4, for k ≥ 0, h ≥ 0,
i) fi = 1, if i = 2

k(4h+ 1) = 2k(2r+ 1) where r is even. That is, fi = 1+ r mod 2,
for r even.
ii) fi = 0, if i = 2

k(4h+ 3) = 2k(2 (2h+ 1) + 1) = 2k(2r+ 1) where r is odd. That
is, fi = 1 + r mod 2, for r odd. ¤

Davis and Knuth [1] prove the following result to which we provide an
interesting corollary.

Theorem 5. Sn+1 = Sn 1 SRn and S
R
n+1 = Sn 0 SRn where S1 = 1.

Corollary 2.

f2i+k =

{
fk, for 1 ≤ k < 2i and k 6= 2i−1
0, for k = 2i−1.

Proof. From Theorem 5, Si and SRi are identical except in their respective
(
2i−1

)th
terms. Since

Si+1 = Si1SRi ,

= f1f2 . . . fk . . . f2i−1(f2i = 1)f2i+1 . . . f2i+k . . . f2i+1−2f2i+1−1

we have

• f2i+k = fk, for 1 ≤ k < 2i and k 6= 2i−1,

• f2i+k = f3(2i−1) = 0 for k = 2
i−1. ¤
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We note that Theorem 5 offers the simplest way to generate Si+1. It requires
only Si.

In this paper we use a generalised version of A2k to produce yet another way
of generating Sn. We find the number and position of single 1s and 0s (that is,
instances of 010 and 101) as well as those of double 11s and 00s, and triple 111s
and 000s, in S. We link the Paperfolding and Stern-Brocot sequences, examine
functions related to S and show that one of these has properties similar to those of
the Gray code function of Bunder et al [7].

2. THE GENERAL ALTERNATING PAPERFOLDING SEQUENCE

We define a generalisation of A2k which utilises Si−n SRi−n instead of 10.

Definition 2. For n < i,

Ai,n =
(
Si−n SRi−n

)2n−1

.

Note that Ai,n#Sn = Si−nf1 SRi−nf2Si−nf3 S
R
i−n · · ·Si−nf2n−1 SRi−n .

Theorem 6.

Si = Ai,n # Sn and

SRi = Ai,n # SRn .

Proof. We prove the first result by induction on n.

We have Si = Ai,1#S1.

Let Si = Ai,t#St, where t < n. Therefore by Theorem 2,

Si = Si−tf1 SRi−tf2Si−tf3 S
R
i−t · · ·Si−tf2t−1 S

R
i−t,

=
(
Si−(t+1) 1 S

R
i−(t+1)

)
f1

(
Si−(t+1) 0 S

R
i−(t+1)

)
f2

(
Si−(t+1) 1 S

R
i−(t+1)

)
f3 · · ·

· · ·
(
Si−(t+1) 1 S

R
i−(t+1)

)
f2t−1

(
Si−(t+1) 0 S

R
i−(t+1)

)
,

= Ai,t+1#A2t#St,

= Ai,t+1#St+1.

Therefore our result is true for all 1 ≤ n < i. A similar argument holds for SRi . ¤

Allouche and Bacher [2] generate S using a particular Toeplitz transform.
They commence with the sequence

B0 = 1ω0ω1ω0ω . . . ,

= (1ω0ω)
∞
.
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To obtain Bk+1 from Bk, for i = 1, 2, . . . , the i
th ω in Bk is replaced by the i

th

term in B0. Thus

B1 = 110ω100ω110ω . . . ,

B2 = 1101100ω1100100ω . . . ,

...

Continuing in this way, we have S = lim
k→∞

Bk.

This transformation can be restated through interleaving. Let Wn = (ω)
2n−1−1

.
Then

B0 = S1 ω SR1 ω S1 ω SR1 ω . . . ,

=
(
S1 ω SR1 ω

)∞
,

= lim
n→∞

An+1,n#Wn.

B1 is obtained from B0 by replacing the i
th ω in B0 by the i

th term in B0. That is,

B1 =
(
S1 1 SR1 ω S1 0 SR1 ω

)∞
,

=
(
S2 ω SR2 ω

)∞
,

= lim
n→∞

An+2,n#Wn.

Continuing in this way, Bk = lim
n→∞

An+k+1,n#Wn. It follows that, S = lim
k→∞

Bk, as

before.

Summary 1. There are three equivalent representations of the paperfolding se-

quence, Si and SRi .

i) Mirroring: Si = Si−1 1 SRi−1 and S
R
i = Si−1 0 SRi−1,

ii) Interleaving: Si = Ai,n#Sn and SRi = Ai,n#SRn where 0 < n < i.

In particular, Si = A2i−1#Si−1 and SRi = A2i−1#SRi−1; and

iii) Alternation: Si = A2i−1#A2i−2# · · ·#A2#1 and SRi = A2i−1#A2i−2# · · ·#A2#0.

3. SOME FUNCTIONS RELATED TO THE PAPERFOLDING
SEQUENCE

Davis and Knuth [1] define the following two functions, which are in our
notation:

Definition 3.

d (n) =

{
1 if fn = 1

−1 if fn = 0,

g (n) =

n−1∑

i=1

d (i) .
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It follows that g (n) is the excess of 1s over 0s in f1 . . . fn−1. Clearly:

Theorem 7. i) d (n) = 2fn − 1 and

ii) g (n) = 1− n+ 2
n−1
∑

i=1

fi.

Davis and Knuth [1] prove the following interesting results, which have obvious
fn counterparts.

Theorem 8. i) d
(
2n+1 −m

)
= −d (m) if 0 < m < 2n,

ii) g
(
2n+1

)
= 1,

iii) g
(
2n+1 −m+ 1

)
= 1 + g (m) if 1 ≤ m ≤ 2n and

iv) minn (g (n) = k) =

⌈
2k+1

3

⌉
.

Prodinger and Urbanek [14] have a function n1 (k), which represents the
number of 1s in the first k places of their S, which has 1s and 0s swapped from our
S. We will use:

Definition 4. N1 (k) is the number of 1s in f1f2 . . . fk .

Thus N1 (k) = k − n1 (k) and

Theorem 9. N1 (k) =
k
∑

i=1

fi.

Prodinger and Urbanek [14] also introduce v (k), the number of changes
of consecutive digits in the binary expansion of k, where the leftmost 1 counts as a
change. So, for example, v (7) = 1 as 7 is 111 in binary form and v (10) = 4 as 10
is 1010 in binary form. They adopt the following definition:

Definition 5. v (0) = 0 and v (2j + i) = v (j) + δ where i, δ ∈ {0, 1} and δ = i+ j
(mod 2) .

They give the following interesting connection with the function N1 (k):

Theorem 10.

n1 (k) =
1

2

(
k − v (k)

)
,

that is, N1 (k) =
1

2

(
k + v (k)

)

and v (k) = 2N1 (k)− k.

Theorem 11. v (k) =
k
∑

i=1

(2fi − 1) = g (k + 1) .

Prodinger and Urbanek [14] also have the interesting result (converted
to N1 (k)):
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Theorem 12. N1 (k) = k −
∑

i≥0

⌊
k + 2i

2i+2

⌋
.

The obvious counterpart via Theorem 11 for v (k) to Theorem 8 iii) is:

Theorem 13. If 2n ≤ k < 2n+1, then v (k) = v
(
2n+1 − k − 1

)
− 1.

This relation is very similar to the recurrence relation for the Gray code
function b (k) found in Bunder et al [7].

Definition 6. If 2n ≤ k < 2n+1, then b (k) = b
(
2n+1 − k − 1

)
+ 2n.

Not surprisingly, some of the results in [7] for b (k) can also be proved for
v (k) .

Theorem 14. i) v (4k + 1) = v (2k) + 1,
ii) v (2r (4k + 1)) = v (2k) + 2 if r > 0 and
iii) v (2r (4k + 3)) = v (2k + 1) if r ≥ 0.

Proof. i) By Definition 5.

ii) v
(
2r (4k + 1)

)
= v

(
2r−1 (4k + 1)

)
if r > 1,

...

= v
(
2 (4k + 1)

)
if r > 0,

= v (4k + 1) + 1,

= v (2k) + 2 by i).

iii) v
(
2r (4k + 3)

)
= v

(
2r−1 (4k + 3)

)
if r > 1,

...

= v
(
2 (4k + 3)

)
,

= v (4k + 3) if r > 0,

= v (2k + 1) . ¤

Theorem 15. i) v (2k + 1)− v (2k) = (−1)k+1

ii) v (2r (4k + 3))− v (2s (4k + 1)) =
{
(−1)k+1 − 2, if s > 0
(−1)k+1 − 1, if s = 0

i) By Theorems 3 and 11,

v (2k + 1)− v (2k) = 2f2k+1 − 1,
= (−1)k+1 .

ii) By Theorem 14,

v (2r (4k + 3))− v (2s (4k + 1)) = v (2k + 1)− v (2k)− 2 if s > 0,
= v (2k + 1)− v (2k)− 1 if s = 0
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and the result follows by i). ¤

4. TRIPLES, DOUBLES AND SINGLES

We now consider consecutive runs of identical terms.

Definition 7. (n-tuple). An n-tuple is an instance of n, and only n, consecutive
identical values in a binary sequence.

Example 2. S4 = 110110011100100 contains:

• one instance of the triple, 111;

• two instances of the double, 11, and three instances of the double, 00;

• one instance each of the single 1 and the single 0.

Theorem 16. For n ≥ 4, Sn contains:
i) 2n−4 instances of the triple, 111, and 2n−4 − 1 instances of the triple, 000;
ii) 2n−3 instances of the double, 11, and 2n−3 + 1 instances of the double, 00;
iii) 2n−4 instances each of the single, 1, and the single, 0.

Proof. We prove i) by induction. Similar proofs exist for ii) and iii). The theorem
holds for n = 4. Suppose for some k, where k ≥ 4, Sk contains 2k−4 instances of
the triple, 111, and 2k−4 − 1 instances of the triple, 000.

Consider Sk+1 = Sk 1 SRk . Since Sk contains 2
k−4 − 1 instances of the triple,

000, SRk contains 2
k−4 − 1 instances of the triple, 111 (they are mirrors of each

other). Similarly, since Sk contains 2
k−4 instances of the triple, 111, SRk contains

2k−4 instances of the triple, 000. Now because Sk is a mirror sequence that begins

with 110, it concludes with 100. Therefore SRk begins with 110. It follows that

the middle term of Sk+1 = Sk 1 SRk generates a triple of 111 in addition to those

already found in Sk and SRk .

Thus Sk+1 contains 2
k−4 + 2k−4 − 1 + 1 = 2k−3 instances of the triple, 111.

Sk+1 also contains 2
k−4+2k−4−1 = 2k−3−1 instances of the triple, 000. It follows

that our result holds for all k ≥ 4. ¤

Corollary 3. The middle element of Sn is located at the beginning of the (2
n−5 +

1)th instance of the triple, 111.

Proof. By Theorem 16, Sn−1 contains 2
n−5 instances of the triple, 111. Since

Sn = Sn−1 1 SRn−1 and 1 S
R
n−1 begins with an instance of the triple, 111, the result

follows. ¤

Theorem 17. Sn contains only singles, doubles or triples.

Proof. Since Si = A2i−1#Si−1, every odd term in Si is different to adjacent odd
terms. Therefore the maximum run of like terms is three before a change occurs.
That is, only singles, doubles and triples can exist within Si. ¤

We discover that singles are regularly spaced in the paperfolding sequence un-
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like doubles and triples. The following theorem shows that, beginning at f13, single
instances of 1 repeat every 16 spaces in S, and beginning at f3, single instances of
0 also repeat every 16 spaces in S.

Theorem 18. In S:
i) The set of all single instances of 1 is given by {f16h+13 : h = 0, 1, 2, . . .}.
ii) The set of all single instances of 0 is given by {f16h+3 : h = 0, 1, 2, . . .}.

Proof. From Theorem 6, for i = n+ 3 and letting n→∞, we have

(4.1) S = S31 SR3 1 S3 0 S
R
3 . . .

where the bracketed entries in (4.1) are consecutive terms in S. Each triple is

formed at these bracketed entries and nowhere else. This is because S3 and SR3
contain no triples and both begin with 11 and end with 00. Singles can only then

be found within the S3 and SR3 components of (4.1) without the first two and last
two terms of each component. Consider the following typical subsequence in (4.1)
beginning with the component S3 and deleting the middle term

(4.2) S3 (1 or 0) SR3 = 1101100 (1 or 0) 1100100.

Note that in (4.2) the third term is the single 0 and the thirteenth term is the single
1. There are no other singles in (4.2) . Since the bracketed term does not affect the
incidence of singles (which is the reason for us not including it in (4.2)), it follows

that single 0s occur every third term in repeats of S3 (1 or 0) SR3 , that is, at a
spacing of 16 terms. Similarly, single 1s occur every thirteenth term in repeats of

S3 (1 or 0) SR3 . The result follows. ¤

The following theorem shows that triples are not regularly spaced, but nonethe-
less can be identified exactly within the paperfolding sequence.

Theorem 19. In S :

i) The set of all first terms of all triples 111 is given by
{
f2k(4h+1) : k = 3, 4, 5, . . . ; h = 0, 1, 2, . . .

}
.

ii) The set of all last terms of all triples 000 is given by
{
f2k(4h+3) : k = 3, 4, 5, . . . ; h = 0, 1, 2, . . .

}
.

Proof. From Theorem 6, for i = n+ 3 and letting n→∞, we have

(4.3) S = S3 1 SR3 1 S3 0 S
R
3 . . .

where the bracketed entries in (4.3) are consecutive terms in S. The bracketed
entries in (4.3) are at f8, f16, f24, . . . and by Theorem 4, bracketed entries with
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value 1 are of the form f2k(4h+1). Thus each triple 111 starts at an fn with n of the

form n = 2k(4h+ 1) and n | 8, establishing i). Similarly, by Theorem 4, bracketed
entries in (4.3) with value 0 are of the form f2k(4h+3). Accordingly, each triple 000

ends at an fn with n of the form n = 2k(4h+ 3) and n | 8, establishing ii). ¤

We now give attention to doubles which have a semi-regular pattern of spac-
ings.

Theorem 20. In S:

i) The set of all first terms of double instances of 11 is the union of the sets

• {f1} ,

•
{
f2k(4h+3)+1 : k = 3, 4, 5, . . . ; h = 0, 1, 2, . . .

}
and

• {f16h+4 : h = 0, 1, 2, . . .} .

ii) The set of all first terms of double instances of 00 is the union of the sets

•
{
f2k(4h+1)−2 : k = 3, 4, 5, . . . ; h = 0, 1, 2, . . .

}
and

• {f16h+11 : h = 0, 1, 2, . . .} .

Proof. i) Since S = 110 . . . , f1 begins a double 11. In (4.3) where a 0 appears, it is
always succeeded by a double 11. From Theorem 19, {f2k(4h+3)+1 : k = 3, 4, 5, . . . ;
h = 0, 1, 2, . . .} must therefore be the set of first terms of doubles 11 following
triples 000. From (4.2) , a double 11 always begins at the fourth term of each S3
component of (4.3) . These are all the possibilities for doubles 11 and so the result
follows.

ii) In (4.3) where a 1 appears, it is always preceded by a double 00. From
Theorem 19,

{
f2k(4h+3)−2 : k = 3, 4, 5, . . . ; h = 0, 1, 2, . . .

}
must therefore be the

set of first terms of doubles 00 preceding triples 111. From (4.2) , a double 00

always begins at the third term of each SR3 component of (4.3) . These are all the
possibilities for doubles 00 and so the result follows. ¤

5. REPEATED SUBSEQUENCS OF THE PAPERFOLDING
SEQUENCE

We now consider repeated subsequences of Sn. Our aim is to discover all the
repeated subsequences of Sn and their size. By so doing, we discover the largest
repeated subsequences of Sn.

Definition 8. (Repeated Subsequences). Let Sn = f1f2 . . . f2n−1. Let also Uk,s =
fkfk+1 . . . fk+s and Vj,s = fjfj+1 . . . fj+s be subsequences of Sn. If for j 6= k,

i) Uk,s = Vj,s and

ii) one of j = 1, k = 1, or fj−1 6= fk−1 is true, and
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iii) one of j + s = 2n − 1, k + s = 2n − 1, or fj+s+1 6= fk+s+1 is true,
then Uk,s and Vj,s are called repeated subsequences (rsss) of Sn.

Consider Sn for n > 4. We have

Sn = Sn−11 SRn−1,(5.1)

= Sn−2 1 SRn−2 1 Sn−2 0 S
R
n−2,(5.2)

= Sn−3 1 SRn−3 1 Sn−3 0 S
R
n−3 1 Sn−3 1 S

R
n−3 0 Sn−3 0 S

R
n−3,(5.3)

...

= Si+1 1 SRi+1 1 · · · 0 SRi+1 1 Si+1 1 · · · 0 Si+1 0 SRi+1,(5.4)

= Si 1 SRi 1 · · · 0 SRi 1 Si 1 · · · 0 Si 0 SRi ,(5.5)

...

= S5 1 SR5 1 · · · 0 SR5 1 S5 1 · · · 0 S5 0 SR5 ,(5.6)

= S4 1 SR4 1 · · · 0 SR4 1 S4 1 · · · 0 S4 0 SR4 ,(5.7)

= S3 1 SR3 1 S3 0 S
R
3 · · · ,

· · · 0 SR3 1 S3 1 · · ·S3 1 SR3 0 S3 0 SR3 ,(5.8)

= S2 1 SR2 1 S2 0 S
R
2 · · · ,

· · · 0 SR2 1 S2 1 · · ·S2 1 SR2 0 S2 0 SR2 .(5.9)

Lemma 1. If n > i > 2, there is no occurrence of Si or SRi in Sn or S
R
n other

than those shown explicitly in (5.5) or its counterpart for SRn .

Proof. (By induction) We prove both the Sn and SRn cases by induction on i.

Consider i = 3.

If there were an occurrence of S3 (or SR3 ) other than one explicitly shown in

(5.5) or its counterpart for SRn , S3 (or S
R
3 ) would have to appear as a part of S3 1

SR3 , S
R
3 1 S3, S3 0 S

R
3 or S

R
3 0 S3. This can be shown, by inspection, to not be

the case.

We now assume the result for i.

Consider i+ 1.

If Si+1 (or SRi+1) appears in (5.4) or its counterpart for S
R
n , in other than the

explicitly shown positions, it must appear in a part of Si+1 1 SRi+1, S
R
i+1 1 Si+1,

Si+1 0 SRi+1 or S
R
i+1 0 Si+1 that includes the 1 or 0 . But then Si (or S

R
i ) appears

in Si 1 SRi , Si 0 S
R
i , S

R
i 1 Si or S

R
i 0 Si other than as an explicit Si (or S

R
i ). This

is impossible by the induction hypothesis. ¤

Proof. (By contradiction) Suppose our result is false, that is, there exists an Si
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or SRi not explicitly identified in (5.5) or its counterpart for S
R
n . Since

(5.10) Si or SRi = S3 1 SR3 · · · (1 or 0) · · ·S3 0 SR3

and (5.8) contains every instance of S3 or SR3 in Sn and S
R
n , the right hand side

of (5.10) must be explicitly identified in (5.8) or its SRn counterpart. But each

S3 and SR3 entry in (5.8) is used to form only the Si and S
R
i entries of (5.5) , a

contradiction. ¤

Lemma 2. Every repeated subsequence (rss) of Sn (n > 5) of length

i) greater than 7, must start with S3 or SR3 .

ii) 7, is a) S3 or SR3 , or b) S
R
2 (1 or 0) S2.

iii) less than 7, does not contain triples and can be discovered within the following

two subsequences of Sn : 001000S3111001 and 011000SR3 111011.

Proof. There are two cases to consider:

1.) Repeated subsequences containing triples.
Triples only form at 1 or 0 in (5.8) since each 1 or 0 is preceded by 00 and is followed
by 11. Consider the first triple in the rss. From (5.8) any 1 or 0 is preceded by a

100 from S3 or SR3 . Accordingly, the smallest possible rsss containing a triple is

SR2 (1 or 0) S2, establishing ii)b). If the rss is any longer and contains a preceding
1 from (5.8) it must contain a whole S3 and, as it doesn’t contain an earlier triple,
must start with S3. Alternatively, if it contains a preceding 0 from (5.8), it must

start with SR3 . Thus i) is established.

2.) Repeated subsequences that do not contain triples.
The largest sequences that do not contain triples in Sn, both of length 11, are

(5.11) 0 0
(
S3 or SR3

)
1 1

where the subsequences 0
(
S3 or SR3

)
1 are entries in (5.8) .

Any rss of length 7 or greater, without containing a triple, must contain an

S3 or SR3 from (5.11) , or the initial or final (6/7)
th or (5/7)th of S3 or SR3 from

(5.11) . Now S3 and SR3 are rsss, but any other rss in (5.11) of length 7 or greater
will include an explicit 0 or 1 from (5.8) . Any such 0 will be preceded by 00 and any
such 1 will be followed by 11, which have to be part of the rss. This is impossible,
as then a triple is included. So there are no rsss of length 7 to 10, without triples,

other than S3 or SR3 , establishing ii)a).

From 1.), the smallest possible rss containing a triple has length 7. Accord-
ingly, all rsss of length less than 7 do not contain triples and are discoverable, by

observation, from 001000S3111001 and 011000SR3 111011, establishing iii). ¤

Lemma 3. If i > 2 and SRi starts a repeated subsequence (rss) of Sn then for

i) n = i+ 2, the rss is SRi .
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ii) n = i+ 3, the rsss are SRi and S
R
i 1 Si.

iii) n > i+ 3, the rsss are SRi , S
R
i 1 Si and S

R
i 0 Si.

Proof. i) By Lemma 1 and (5.2) , SRi is the only rss of Si+2 starting with S
R
i .

ii) By Lemma 1 and (5.3) , SRi , S
R
i 1 Si are the only such rsss of Si+3.

iii) By Lemma 1 and (5.5) , if n > i+ 3, SRi , S
R
i 1 Si and S

R
i 0 Si are such

rsss of Sn.

If there are other such rsss starting with a particular instance of SRi , by
Lemma 1 and (5.5) , these start with

a) SRi 0 Si 0 S
R
i = SRi 0 S

R
i+1

b) SRi 0 Si 1 S
R
i = SRi 0 Si+1

c) SRi 1 Si 0 S
R
i = SRi 1 S

R
i+1

d) SRi 1 Si 1 S
R
i = SRi 1 Si+1.

In (5.4) it is clear that each SRi is part of an S
R
i+1 or Si+1, and that this is the case

for all occurrences of the rss in Sn. Thus the rss has SRi as part of Si+1 or S
R
i+1 and

so does not start with SRi . This is a contradiction, so the given rsss starting with

SRi are the only ones. ¤

Theorem 21. The repeated subsequences (rsss) of Sn, by length, are:

Length Repeated Subsequences of:

S2 S3 S4 S5 Sn, n > 5

1 1 1, 0 1, 0 1, 0 1, 0

2 11, 10, 01 11, 10, 01, 00 11, 10, 01, 00

3 110
S2, SR2 ,
011

S2, SR2 ,
011,
001

S2, SR2 ,
011,
001

4 1100, 1001
1100, 1001,
0011, 0110

5 11001, 01100 11001, 01100

6 011001 011001

7
S3, SR3 ,

SR2 1 S2

S3, SR3 ,

SR2 1 S2,

SR2 0 S2

15
S4, SR4 ,

SR3 1 S3,

SR3 0 S3

...
...

2n−4 − 1
Sn−4, SRn−4,

SRn−5 1 Sn−5,

SRn−5 0 Sn−5
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2n−3 − 1
Sn−3, SRn−3,

SRn−4 1 Sn−4,

SRn−4 0 Sn−4

2n−2 − 1 Sn−2, SRn−2,

SRn−3 1 Sn−3

where the Sis are those shown explicitly in (5.2) to (5.9) .

Proof. There are two cases:
i) Lengths 1 to 7: For n ≤ 5, by observation. For n > 5, use Lemma 2 ii) and iii).
ii) Lengths greater than 7: By Lemma 2 part i), any rss of Sn must start with an

Si or SRi for i ≥ 3. Lemma 3 provides all the rsss starting with SRi .
If an rss starts with Si, it can be just Si for 3 ≤ i ≤ n−2, or it can, by (5.5) ,

continue as

a) Si 0 SRi = SRi+1, or

b) Si 1 SRi = Si+1.

In case a), by Lemma 3, we have one of the above rsss.

In case b), the rss is Si+1 or, applying the above again, starts with SRi+2 or
Si+2, so the same rsss are obtained. ¤

Corollary 4. The longest rsss of Sn for n > 4, are Sn−2, SRn−2 and S
R
n−3 1 Sn−3.

Proof. The case for n = 5 is proven by observation. The case for n > 5 follows
from Theorem 21. ¤

Corollary 5. Let L be the length of the largest repeated subsequence of Sn. Then

L =





2n−1 − 1 for n < 4
5 for n = 4

2n−2 − 1 for n > 4.

Proof. The case for n ≤ 4 is proven by observation. The case for n > 4 follows
from Corollary 4. ¤

6. POWER SERIES AND THE PAPERFOLDING SEQUENCE

We conclude with the generalisation of a result mentioned in Dekking et al
[8].

Theorem 22. Let S = f1f2f3 . . . and F (x) =
∞
∑

n=1

fnx
n where |x| < 1. Then for

m = 1, 2, . . . ,

F (x)− F
(
x2

m
)
=

m−1∑

i=0

x2
i

1− x2i+2 .
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Proof. By Theorem 4, for |x| < 1,

F (x)− F
(
x2

m
)
=

∞∑

i=0

∞∑

h=0

x2
i(4h+1) −

∞∑

i=0

∞∑

h=0

x2
i+m(4h+1),

=

m−1∑

i=0

∞∑

h=0

x2
i(4h+1),

=

m−1∑

i=0

x2
i

1− x2i+2 . ¤

The result in Dekking et al [8] can be represented as a corollary to Theorem 22.

Corollary 6. Let S = f1f2f3 . . . and F (x) =
∞
∑

n=1

fnx
n where |x| < 1. Then

F (x)− F
(
x2
)
=

x

1− x4
.

Proof. This is the case m = 1 in Theorem 22. ¤

7. LINKING PAPERFOLDING AND THE STERN-BROCOT TREE

An excellent presentation of the Stern-Brocot tree can be found inGraham et
al [9]. Links between the Paperfolding and Stern-Brocot sequences using continued
fractions have been identified previously (See for example, Mendès France et al.
[13]). We now continue this linkage. Firstly, we give some background definitions.

Definition 9. (Mediants) We define the mediant of
m

n
and

r

s
as

m

n
⊕ r

s
=
m+ r

n+ s
.

The Stern-Brocot tree is made up of successive levels of mediants with the 0th

level consisting of
0

1
and

1

0
. The mediants in any one level are generated by forming

mediants from terms in previous levels. Thus the mediant of
1

2
(found in level 2)

and
2

3
(found in level 3) is

1 + 2

2 + 3
=

3

5
which is found in level 4. The Stern-Brocot

sequence is related to these mediants according to the following definition:

Definition 10. (Stern-Brocot Sequence) Let H0 =
〈
0

1
,
1

0

〉
and for k ≥ 1,

Hk = Hk−1#medHk−1

where medHk−1 denotes the increasing sequence of mediants that are generated

from consecutive terms in Hk−1. That is, if

Hk−1 =
〈
hk−1,1, hk−1,2, . . . , hk−1,2k+1

〉
,

then

medHk−1 =
〈
(hk−1,1 ⊕ hk−1,2) , (hk−1,2 ⊕ hk−1,3) , · · · ,

(
hk−1,2k ⊕ hk−1,2k+1

)〉
.
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Hk represents the increasing sequence containing both the first k generations of
mediants based on H0, and the terms of H0 itself. It is called the Stern-Brocot
sequence.

We now explore the presence of a paperfolding pattern in the Stern-Brocot tree.

Definition 11. (Left and Right Mediants) A left mediant is the mediant formed
in level k + 1 that is smaller than its parent found in level k. A right mediant is
the mediant formed in level k + 1 that is greater than its parent found in level k.

From Definition 11, if m is a term in the ith level of the Stern-Brocot tree,
the left mediant of m is the mediant that has m as its parent and appears in the
(i+ 1)

th
level and to the left of m. Similarly the right mediant of m is the mediant

that has m as its parent and appears in the (i+ 1)
th
level and to the right of m.

Example 3. The left mediant of
3

8
is

4

11
. The right mediant of

3

8
is

5

13
. As expected

these mediants appear in the 6th level because
3

8
is in the 5th level.

Since every term possesses a left and right mediant (except
0

1
and

1

0
) and

from level 2 onwards there are exactly twice the number of terms in any level to
that level immediately above it, all terms in any level are simply a succession of left
and right mediants of terms in the preceding level. Moreover since in any one level
(except the 0th and 1st), the left mediant of a term is immediately followed by the
right mediant of the same term, each level after the first consists of an alternating
sequence of left and right mediants.

Bates et al. [5] have shown that when expressed in the shortest form of their
simple continued fractions:

i) Left mediants possess continued fractions of the form [a0, a1, . . . , ak] where
k is odd.

ii) Right mediants possess continued fractions of the form [a0, a1, . . . , ak]
where k is even.

Accordingly, if we designate any entry in the Stern-Brocot tree with short
form continued fraction [a0, a1, . . . , ak] as 1 for k odd and 0 for k even, then ev-
ery level of the Stern-Brocot tree represents an alternating sequence. Under this
mapping, if we displace vertically downwards levels 1 to j − 1 onto level j, (that
is, if we generate the Stern-Brocot sequence Hj and delete the terms

0

1
and

1

0
and

then redesignate all terms as either 0 or 1 according to this mapping) we have, by
Theorem 2, the paperfolding sequence of size 2j − 1. That is, for j unbounded, we
have established the following result:

Theorem 23. Delete
0

1
and

1

1
from the Stern-Brocot sequence and represent every

other term, except 1, in its short form continued fraction [a0, a1, . . . , ak] . If k is odd,
replace the continued fraction with 1; if k is even, replace the continued fraction
with 0. The resulting sequence is the paperfolding sequence.
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Theorem 23 tells us that the parity of the length of the short form continued

fraction for
a (n)

b (n)
, where a (n) is Sloane’s sequence A007305 and b (n) is Sloane’s

sequence A047679, is the paperfolding sequence. (See Sloane [15, A007305,
A047679]). Equivalently, Theorem 23 tells us that if we designate all left medi-
ants as 1 and all right mediants as 0 in the Stern-Brocot tree, and set the term in
level 1 as 1, then for n > 1, level n converts to the alternating sequence. By then
moving every term vertically downward from level 1 to n−1 onto level n we obtain
Sn.

8. LINKING PAPERFOLDING AND THE BINARY REFLECTED
GRAY CODE

Our attention now turns to the Binary Reflected Gray Code (BRGC) as yet
another example of the way in which the paperfolding sequence, and interleave
operators in general, are embedded in many constructions.

Gray Codes owe their name to Frank Gray, a research physicist at the Bell
Telephone Laboratory. Though they were first used in telegraphy by Emile Baudot
(1845–1903), Gray used these codes to minimise errors that arose in signals trans-
mitted by pulse code modulation. The codes are still used for checking errors in
communications systems. There are several types of code with that property. We
confine ourselves to the Binary Reflected Gray Code (BRGC).

Definition 12. (Binary Reflected Gray Code, BRGC) Let n = 2k + j, where n, j
and k are non-negative integers such that 2k ≤ n < 2k+1, k ≥ 0 and so 0 ≤ j < 2k.

Then the Binary Reflected Gray Code of n is defined by

G (n) = n− j +G (n− (2j + 1)) ,
= 2k +G

(
2k − (j + 1)

)

where G (0) = 0.

We designate G(n) to base 2 as G(n)2 and define the First Forward Difference
Function of G, ∆G, as follows:

Definition 13. (First Forward Difference of G) The First Forward Difference
Function of G, ∆G, is defined as ∆G (n) = G (n+ 1)−G (n) .

Also we define the Binary First Forward Difference of G sequence, Pi, as
follows:

Definition 14. (Binary First Forward Difference of G Sequence) The Binary First
Forward Difference of G Sequence, Pi, is defined as Pi =

〈
p (0) , p (1) , . . . , p

(
2i − 2

)〉
,

where for n = 0, 1, 2, . . .

p (n) =

{
1 if ∆G (n) > 0
0 if ∆G (n) < 0.
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Table 1 shows G(n) for n = 0 to 32 with corresponding values for G(n),
G(n)2, ∆G(n) and p(n). Notice that each successive value of G (n) differs from its
previous value in one bit change. For example, for n = 9, 10, 11, G (n)2 = 1101,
1111, 1110. It is this feature that makes Gray Codes attractive as a tool for checking
errors in data transmission. Notice also in Table 1 that we have grouped successive
integers into blocks. That is, the kth block, designated as Bk, consists of all integers
2k ≤ n < 2k+1.

n G(n) G (n)2 ∆G(n) p (n)

0
1

0
1

0
1

1
2

1
1

2
3

3
2

11
10

−1
4

0
1

4
5
6
7

6
7
5
4

110
111
101
100

1
−2
−1
8

1
0
0
1

8
9
10
11
12
13
14
15

12
13
15
14
10
11
9
8

1100
1101
1111
1110
1010
1011
1001
1000

1
2
−1
−4
1
−2
−1
16

1
1
0
0
1
0
0
1

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

24
25
27
26
30
31
29
28
20
21
23
22
18
19
17
16

11000
11001
11011
11010
11110
11111
11101
11100
10100
10101
10111
10110
10010
10011
10001
10000

1
2
−1
4
1
−2
−1
−8
1
2
−1
−4
1
−2
−1
32

1
1
0
1
1
0
0
0
1
1
0
0
1
0
0
1

32 48 110000 1 1

Table 1: The Binary Reflected Gray Code

Lemma 4. In the column ∆G (n) in Table 1, for k ≥ 0 and 0 < t < 2k+1,
i) ∆G

(
2k − 1

)
= 2k, and

ii) ∆G
(
2k+1 − 1 + t

)
= −∆G

(
2k+1 − 1− t

)
.
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Proof. i) From Definition 13, ∆G
(
2k − 1

)
= G

(
2k
)
−G

(
2k − 1

)
and from Defi-

nition 12, G
(
2k
)
= 2k +G

(
2k − 1

)
. Thus ∆G

(
2k − 1

)
= 2k.

ii) By Definitions 13 and 12,

∆G
(
2k+1 − 1 + t

)
= ∆G

(
2k+1 + (t− 1)

)
,

= G
(
2k+1 + t

)
−G

(
2k+1 + (t− 1)

)
,

=
[
2k+1 +G

(
2k+1 − t− 1

)]
−
[
2k+1 +G

(
2k+1 − t

)]
,

= G
(
2k+1 − t− 1

)
−G

(
2k+1 − t

)
,

= −∆G
(
2k+1 − 1− t

)
. ¤

Lemma 4 ii) tells us that in the column ∆G (n) in Table 1, for k > 0, entries
that are equally spaced either side of 2k have the same magnitude but are opposite
in sign.

Theorem 24. Pi = Si, the paperfolding sequence of length 2
i − 1.

Proof. We prove this by induction. Since ∆G (0) = 1, P1 = 1 = S1. Suppose
Pk = Sk. From Lemma 4,

i) ∆G
(
2k − 1

)
= 2k, and so p

(
2k − 1

)
= 1.

ii) All entries ∆G
(
2k + t

)
= −∆G

(
2k − t− 2

)
for t = 0, 1, 2, . . . , 2k − 2.

But this means that Pk+1 = Sk 1 SRk = Sk+1. ¤

Note that Theorem 24 can also be proven from Theorem 4 and Lemma 11 in
Bunder et al. [7].

We conclude with an interesting aspect of the code whereby a variant of the
paperfolding sequence appears through examining the inverse of the code.

Definition 15. (Inverse Binary First Forward Difference of G Sequence). Let
∆G−1(n) = G−1(n+ 1)−G−1(n) whereby

q (n) =

{
1 if ∆G−1(n) > 0
0 if ∆G−1(n) < 0.

The Inverse Binary First Forward Difference of G Sequence, Qi, is given by:

Qi =
〈
q (0) , q (1) , . . . , q

(
2i − 2

)〉
.

Table 2 shows ∆G−1(n) and q (n) for n = 0 to 32. As with the paperfolding
sequence, Qi, can be expressed in three forms, namely,
i) Mirroring: Qi+1 = Qi 1 Qi, where Q1 = 1 and Qi is defined as the sequence
formed when each 1 in Qi is replaced by 0 and each 0 in Qi is replaced by 1.
ii) Interleaving: Qi+1 = D2i#Qi, where D2i = D2i−1D2i−1 for which D2 = A2 =
10, Q1 = 1.
iii) Alternation: Qi+1 = D2i#D2i−1# · · ·#D2#1.
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n G−1(n) G−1(n)2 ∆G−1(n) q (n)

0
1

0
1

0
1

1
2

1
1

2
3

3
2

11
10

−1
5

0
1

4
5
6
7

7
6
4
5

111
110
100
101

−1
−2
1
10

0
0
1
1

8
9
10
11
12
13
14
15

15
14
12
13
8
9
11
10

1111
1110
1100
1101
1000
1001
1011
1010

−1
−2
1
−5
1
2
−1
21

0
0
1
0
1
1
0
1

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

31
30
28
29
24
25
27
26
16
17
19
18
23
22
20
21

11111
11110
11100
11101
11000
11001
11011
11010
10000
10001
10011
10010
10111
10110
10100
10101

−1
−2
1
−5
1
2
−1
−10
1
2
−1
5
−1
−2
1
42

0
0
1
0
1
1
0
0
1
1
0
1
0
0
1
1

32 63 111111 −1 0

Table 2: The Inverse Binary Reflected Gray Code

9. NUMBERED PAPERFOLDING SEQUENCE

We introduce a numbering of the entries in the paperfolding sequence to
generate the numbered paperfolding sequence.

Definition 16. (Numbered Paperfolding sequence) Let Sn represent the numbered
paperfolding sequence after n folds commencing with S1 = 1. That is, Sn is formed
by the interleaving of the numbered creases

〈
2n−1, 2n−1 + 1, · · · , 2n − 1

〉
with Sn−1.

Note that the numbered paperfolding sequence is simply the stickbreaking
sequence without its first term 0. Details on the stickbreaking sequence can be
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found at [16].

Example 4. S5 =

〈

16, 8, 17, 4, 18, 9, 19, 2, 20, 10, 21, 5, 22, 11, 23, 1,
24, 12, 25, 6, 26, 13, 27, 3, 28, 14, 29, 7, 30, 15, 31

〉

Lemma 5. Every even integer can be expressed in the form 2k−1 + a2k where
k = 2, 3, . . . and a = 0, 1, 2, . . .

Proof. For p > 1, every even integer u can be expressed in one of two ways.
That is, u = 2p (4h+ 1) or u = 2p (4h+ 3) , h = 0, 1, 2, . . .

Consider each case:

i) u = 2p (4h+ 1) :

u = 2p (4h+ 1) ,

= 2p (2 · 2h+ 1) ,(9.1)

= 2p+1 · 2h+ 2p.

ii) u = 2p (4h+ 3) :

u = 2p (4h+ 3) ,

= 2p (4h+ 2 + 1) ,(9.2)

= 2p+1 (2h+ 1) + 2p. ¤

Theorem 25. Let ft,n denote the t
th entry in Sn. Then,

i) for odd entries in Sn, f2k−1,n = 2n−1 + k − 1, where k = 1, 2, · · · , 2n−1.
ii) for even entries in Sn, f2k−1+a2k,n = 2

n−k + a, where k = 2, 3, · · · , n and a =
0, 1, 2, · · · , 2n−k − 1.

Proof. We prove by induction on n.

S1 = 〈f1,1〉 =
〈
20 + 1− 1

〉
= 〈1〉 .

S2 = 〈f1,2, f2,2, f3,2〉 =
〈
21 + 1− 1, 22−2, 21 + 2− 1

〉
= 〈2, 1, 3〉 .

Suppose our inductive hypothesis is true for all n up to some value m. Since
Sm+1 is formed by interleaving

〈
2m, 2m + 1, · · · , 2m+1 − 1

〉
with Sm, we have

i) For odd entries in Sm+1,

f2k−1,m+1 = f2k−1,m + 2
m−1,

= 2m−1 + k − 1 + 2m−1,
= 2m + k − 1.

The first part of our result follows.
ii) For even entries in Sm+1, consecutive even entries in Sm+1 are consecutive entries
in Sm. There are two subcases:

a) If f2t,m+1 | t odd, then these are the odd entries in Sm which are the
entries spaced 4-apart, commencing with f2,m+1, in Sm+1. That is, they are all
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terms f2k−1+a2k,m+1 | a = 0, 1, 2, · · · , 2m+1−k − 1 and k = 2. Hence from our
induction hypothesis

f2t,m+1 = f2+a22,m+1 | a = 0, 1, 2, · · · , 2m−1 − 1,
= 2m−1 + r − 1 | r = 1, 2, · · · , 2m−1,
= 2m−1 + a | a = 0, 1, 2, · · · , 2m−1 − 1,
= 2m+1−2 + a | a = 0, 1, 2, · · · , 2m+1−2 − 1.

And so this subcase proves the second part of our result for k = 2.

b) If f2t,m+1 | t even, then these are the even entries in Sm which are
the entries spaced 4-apart, commencing with f4,m+1, in Sm+1. From Lemma ,
after excluding the case k = 2 in a), they are all terms f2k−1+a2k,m+1 | a =
0, 1, 2, · · · , 2m+1−k − 1 and k = 3, 4, · · · ,m + 1. Hence from our induction hy-
pothesis,

f2t,m+1 = f2k−1+a2k,m+1 | a = 0, 1, 2, · · · , 2m+1−k − 1 and k = 3, 4, · · · ,m+ 1,
= f2j−1+a2j ,m | a = 0, 1, 2, · · · , 2m−j − 1 and j = 2, 3, 4, · · · ,m,
= 2m−j + a | a = 0, 1, 2, · · · , 2m−j − 1 and j = 2, 3, 4, · · · ,m,
= 2m+1−k + a | a = 0, 1, 2, · · · , 2m+1−k − 1 and k = 3, 4, · · · ,m+ 1.

And so, this subcase proves the second part of our result for k = 3, 4, · · · ,m + 1.
Combining a) and b) the second part of our result follows. Combining i) and ii)
our result follows. ¤

The following corollary restates Theorem 25 in a longer form that is easier to
work with for even entries of Sn.

Corollary 7. Let ft,n denote the t
th entry in Sn. Then,

i) for odd entries in Sn, f2k−1,n = 2n−1 + k − 1,
where k = 1, 2, · · · , 2n−1.

ii) for even entries in Sn,
a) f2k(4a+1),n = 2

n−k−1 + 2a and

b) f2k(4a+3),n = 2
n−k−1 + 2a+ 1

where k = 1, 2, · · · , n− 1 and a = 0, 1, 2, · · · , 2n−k−1 − 1.

Proof. i) is directly taken from Theorem 25 i).

ii) a) follows from (9.1) and Theorem 25 ii).

ii) b) follows from (9.2) and Theorem 25 ii). ¤

REFERENCES

1. C. Davis, D. E. Knuth: Number Representations and Dragon Curves – 1. Journal of
Recreational Mathematics, 3 (1970), 66–81.



118 Bruce Bates, Martin Bunder, Keith Tognetti

2. J. P. Allouche, R. Bacher: Toeplitz Sequences, Paperfolding, Towers of Hanoi

and Progression–Free Sequences of Integers. L’Enseignement Mathématique 38 (1992),
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