©2020 Compass Learning Technologies ← Live Mathematics on the Web ← GeoGebra Assessment Showcase ← Algebra Explorer
LaTeX of what you typed:
Text of what you typed:
Text of what you typed with Latex2JS:
Text of what you typed with Latex2Math:
Peek behind the scenes...
= Step =
Some to try...
GeoGebra: nroot(8,3):
Enter \nthroot3[space]8[space]
Greatest Common Divisor of 24 and 32
GeoGebra: GCD(24,32):
Enter gcd(24,32)
Continued Fraction for \(\sqrt{m}\)
GeoGebra: ContinuedFraction(\(\sqrt{m}\)):
Enter cf(\sqrt(m[space])
Define and plot \(ax^n+bx+c\)
GeoGebra: \(ax^n+bx+c\):
Enter ax^n [space]+bx+c
Complete the Square for \(ax^2+bx+c\)
GeoGebra: CompleteSquare(\(ax^2+bx+c\)):
Enter cs(ax^2 [space]+bx+c)
Factor \(ax^n+bx+c\)
GeoGebra: Factor(\(ax^n+bx+c\)):
Enter factor(ax^n [space]+bx+c)
(CAS only) CFactor \(ax^n+bx+c\)
GeoGebra: CFactor(\(ax^n+bx+c\)):
Enter cfactor(ax^n [space]+bx+c)
(CAS only) Solve \(ax^n+bx+c\)
GeoGebra: Solve(\(ax^n+bx+c\)):
Enter solve(ax^n [space]+bx+c)
(CAS only) CSolve \(ax^n+bx+c\)
GeoGebra: CSolve(\(ax^n+bx+c\)):
Enter csolve(ax^n [space]+bx+c)
Derivative of \(y= ax^n+bx+c\)
GeoGebra: Derivative(\(ax^n+bx+c\)):
Enter d/dx[space](ax^n+bx+c)
(Be sure to include parentheses around the expression!)Tangent of \(y= ax^m+bx+c\) at x = n
GeoGebra: Tangent(m,\(ax^n+bx+c\)):
Enter \tngnt(m, ax^n+bx+c) (or \tangent(m, ax^n+bx+c))
Integral of \(y=ax^n+bx+c\) between 0 and m
GeoGebra: Integral(\(ax^n+bx+c\),0,m):
Enter \int_0[space]^m[space][space][space](ax^n[space][space][backspace]+bx+c)[space][space]dx
(Be sure to include parentheses around the expression!)
(CAS only) Sum of \(({{1}\over {4}})^x\) from x = 0 to \(\infty\)
NOTE: This is Archimedes Infinite Sum!
GeoGebra: Sum((1/4)^x,x,1,Infinity):
Enter \sum(x=1[space][space]\infty[space][space](1/4[space][space]^x)
Table of \(y= \frac{\left(x\pm \sqrt(5x^2+4)\right)}{2}\)
This is sometimes called the Fibonacci Function - study the table of values to see why...
GeoGebra: (x+sqrt(5*x^2+4))/2:
Enter \table(x+\sqrt(5*x^2[space]+4[space][space])/2[space] or just (x+\sqrt(5*x^2[space]+4[space][space])/2[space] and tap the View Table button.
3D Graph of \(y^2=x^2+xy+1\)
For a different view of the Fibonacci Function, set GeoGebra Perspective to T for this...
GeoGebra: Try Solve(y^2=x^2+x*y+1,y):
Enter y^2=x^2+x*y+1
(Graph Input only) Stat Plots: BoxPlot
GeoGebra: BoxPlot(5,1,{0,0,1,1,1,2,2,3,3,3,4,5,5}):
Enter boxplot(5,1,{0,0,1,1,1,2,2,3,3,3,4,5,5})
(Graph Input only) Stat Plots: DotPlot
GeoGebra: DotPlot({0,0,1,1,1,2,2,3,3,3,4,5,5}):
Enter dotplot({0,0,1,1,1,2,2,3,3,3,4,5,5})
(Graph Input only) Stat Plots: BarChart
GeoGebra: BarChart({0,1,2,3,4,5}, {2,3,2,3,1,2}):
Enter barchart({0,1,2,3,4,5}, {2,3,2,3,1,2})
(Graph Input only) Stat Plots: FrequencyPolygon
GeoGebra: FrequencyPolygon({-0.5,0.5,1.5,2.5,3.5,4.5,5.5}, {2,3,2,3,1,2}):
Enter FrequencyPolygon({-0.5,0.5,1.5,2.5,3.5,4.5,5.5}, {2,3,2,3,1,2})
(Graph Input only) Stat Plots: StemPlot
GeoGebra: StemPlot({0,0,1,1,1,2,2,3,3,3,4,5,5}):
Enter stemplot({0,0,1,1,1,2,2,3,3,3,4,5,5})
Home ← Live Mathematics and STEM on the Web ← GeoGebra Assessment Showcase ← Algebra Explorer