TI-72spire

Home < TI-Nspire Authoring < _TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 8

Scripting Tutorial - Lesson 8: Quick Start: Working with Graphics

Download supporting files for this tutorial

Texas Instruments TI-Nspire Scripting Support Page

Like Lua's image

manipulation

commands, the

graphics commands

are simple and

intuitive. Begin by

noting that the

maximum screen Click anywhere on this image for a video demonstration
resolution available F¥ ¢ 1 13 graphics_tutl <7 ol |
to Lua programs
within TI-Nspire is
318 by 212 pixels.
Each of the graphics
commands must be
called within a
graphics context. In
other words, within
the now-familiar

a1 2=Y -~ ]
Drag point F

function

on.paint(gc) each A

graphics command =7 scale=2.
must be preceded 160,40

by gc:. You can use
a graphics command
within a user-
defined function by

setting gc as an

argument, but this

function must be

called within the

on.paint(gc)

function.

Lesson 8.1: Graphics Commands: Reference

The basic graphics commands are as follows (remember Lua is case
sensitive!):

e drawlLine(xstart, ystart, xend, yend) - draws a line between the



given coordinates.

e drawRect(x, y, xwidth, yheight) - draws a rectangle at (x, y) with
length and height as given.

o fillRect(x, y, xwidth, yheight) - fills a rectangle at (x, y) with the
last defined color.

e drawPolyLine({x1, y1, x2, y2,..,xn, yn, x1, y1}) - draws a
polygon linking the ordered pairs. Note: to close the polygon it
must end where it began. The figure is NOT automatically
closed, which explains why it is not called "drawPolygon".

e fillPolygon({x1, y1, x2, y2,..,xn, yn, x1, y1}) - fills a polygon
defined by the coordinate points. It must be closed.

e drawArc(x, y, width, height, start angle, turn angle) - draws an
arc at (x, y) with width and height as given and closing the
desired angle. A circle will be defined from 0 to 360.

o fillArc(x, y, width, height, start angle, turn angle) - fills the
defined arc or circle.

e drawString("string"”, x, y [, Position]) - draws a string at the
given coordinates. Position is the string's anchor point: it can be

"bottom", "middle" or "top".
e getStringWidth(string) - returns the string width.

e getStringHeight(string) - returns the string height.

Other useful graphics commands include:
¢ isColorDisplay() returns 1 if color (CX), O if not.

e setAlpha(integer) - where the argument is an integer between 0
and 255, sets the transparency.

e setColorRGB(red, green, blue) RGB values are integers between
0 and 255.

o setFont(font, type, size) - font: ("sanserif", "serif",..), type: ("b",
"r", "i", "bi") for bold, regular, italic and bold italic. Size is an
integer value.

o setPen(size, style): size ("thin", "medium", "thick"), style
("smooth", "dotted", "dashed").

Lesson 8.2: Putting it to Use

We will begin with something simple:
a box. This box is to be 100 pixels
by 50 pixels, and is situated at the
coordinate point (10, 10), in the top
left corner of the window.

function drawBox(x, y, length,
height, gc)

*Unsaved ==




gc.drawRect(x, y, length,
height)

end

function on.paint(gc)
gc:setColorRGB(165,42,42)

gc:setPen("medium”,
"smooth")

drawBox(10, 10, 100, 50,
go

end

We could have simply put the
gc.drawRect command in the
on.paint function, but this way we
are able to customize our box more
easily. Why don't we place the box in
the center of the window? As we
have done previously, define window
height and width as variables for
convenience, and then use these
with our box formula. We can also
control the dimensions of our box:
suppose we wish to make it one T —
qguarter the height of the window,
and twice as long as it is high? Check
the adjustments for the box to align
in the center.

function on.paint(gc)

local w =
platform.window:width()

local h =
platform.window:height()

gc:setColorRGB(165,42,42)

gc:setPen("medium”,
"smooth")

drawBox(w/2 - h/4,
3*h/8, h/2, h/4, gc)

end

Now let's put two boxes of the same
dimensions alongside each other, on
either side of the center of the
window. And make them different
colors. And color them in! - for this



last, just change the drawRect
command in our box function to
fillRect.

*Unsaved <=

function on.paint(gc)

local w =
platform.window:width()

local h =
platform.window:height()

gc:setColorRGB(165,42,42)

gc:setPen("medium”,
"smooth")

drawBox(w/2, 3*h/8, h/2, —t—
h/4, go)

1

'3

gc:setColorRGB(255,165,0)

drawBox(w/2 - h/2,
3*h/8, h/2, h/4, gc)

end
Finally, why not fill these boxes with
circles? Change the box function

back from fillRect to drawRect to
better see our circles.

function on.paint(gc) R —

v

local w =
platform.window:width()

local h =
platform.window:height()

gc:setColorRGB(165,42,42)

gc:setPen("medium”,
"smooth")

drawBox(w/2, 3*h/8, h/2,
h/4, go)

gc:fillArc(w/2, 3*h/8 , h/4,
h/4, 0, 360)

gc:fillArc(w/2 + h/4,
3*h/8 , h/4, h/4, 0, 360)

gc:setColorRGB(255,165,0)

drawBox(w/2 - h/2,
3*h/8, h/2, h/4, gc)

agc:fillArc(w/2 - h/4, 3*h/8



,h/4, h/4, 0, 360)

gc:fillArc(w/2 - h/2, 3*h/8
,h/4,h/4, 0, 360)

end

Challenge: As we did in previous tutorials, try now to link the position
of the boxes to a variable linked point in a graph window, so that
dragging the point around the graph window drags the boxes around
the Lua window. You may also like to insert a scale variable and use it
to control the dimensions of our model. Check the Lua script in the
downloads folder for this lesson to see one approach to these
problems.

In lesson 9 and lesson 10 you will put all that we have learned
together to create dynamic models.

Home < TI-Nspire Authoring < _TI-Nspire Scripting HQ « Scripting Tutorial - Lesson 8




