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ABSTRACT

This study documents the efforts of a teacher/researcher to learn to use

computer algebra software applications as pedagogical tools through

systematic self-study, clinical observations of secondary students and

collaboration with groups of preservice teachers. The study also

involved the ongoing development of a computer-based learning

environment which accompanied the research process and served to

embody the main results. Complementing action research methods with

grounded theory analysis, the study describes and explains the ways in

which individuals (six secondary students and two groups of six

preservice teachers) used available software tools for algebra learning.

The subsequent grounded theory situates tool use within contexts of

mathematical and pedagogical thinking on the part of the user. Effective

use of available software tools was also found to be conditional upon

characteristics of both the software and the learning environment.

Analysis of pedagogical beliefs of both students and preservice teachers

revealed a consistent culture of mathematics learning which devalued

external support factors and exploration in favour of repetitive

individual skill development within teacher-dominated instructional

sequences. Detailed analysis of students’ algebraic imagery revealed

that, while some algebraic forms served a strong and consistent signal

function in eliciting meaning and action strategies, others (including

simple expressions and tables of values) were associated with unclear

signals, frustrating students’ abilities to act appropriately in both

traditional and computer-based learning situations. These factors acted

as impediments to the effective use of mathematical software tools.
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At the same time, strategic use of appropriate mathematical software

(defined as goal-directed, flexible and insightful) supported the

development of algebraic skills and understandings in students. Such

use was associated for the students with increased manipulative and

representational repertoires and increased confidence in their results.

The graphical representation was most favoured by all participants,

although it was commonly associated with superficial and automatic

use. The table of values, while recognised as effective for detailed

comparison of functions, was more difficult to interpret and less

favoured. Computer algebra tools were found to be most effective in

supporting mathematical investigation and the explicit development of

extended algebraic processes, such as equation solving.
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Learning to Use New Tools Introduction

One

Introduction

“If one changes the tools of thinking available to a child, his mind will have a

radically different structure.” (Vygotsky, 1978, p. 126)

Mathematics learning is a complex activity. The thinking which

accompanies and directs such learning contains both mathematical

and pedagogical elements, as those involved engage in process and

content dimensions of the activity, within a variety of learning contexts.

At different times, mathematics learning may be seen to incorporate

elements indicative of distinct cognitive modes - from sensori-motor

(utilising physical movement and goal-directed action) and ikonic

(global, intuitive and visual) to the concrete-symbolic and formal

modes, more usually associated with mathematical activity across the

secondary school and beyond. Of critical importance, however, is a

conception of mathematics as a “tool-based activity” (Confrey, 1993a),

supported and made possible by such cognitive aids as language (both

informal and formal), notation and symbol systems. Additionally, there

are external tools for mathematics learning - writing and drawing

implements, calculators, geometric construction instruments and,

increasingly, computer hardware and software. These last appear to

offer new means of transforming, not only the teaching and learning

process, but perhaps the nature of mathematics itself (Steen, 1992,

Kaput, 1992, Bishop, 1993).
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Learning to Use New Tools Introduction

This study of the use of advanced mathematical software by secondary

students and preservice teachers attempts to make explicit the ways in

which individuals think and act when doing and learning mathematics

in a tool-based context. The action occurs within the domain of algebra,

long a focal point for mathematics education research. The importance

accorded to the learning of algebra is a consistent feature of

educational systems worldwide (Wagner and Kieran, 1989, Kieran,

1992); equally consistent is its place as a principal stumbling block for

learners. The impact of computer technology upon the twin processes

of teaching and learning within the domain of algebra adds a new,

potentially explanatory dimension to this problematic field of study.

The research focus lies with the use of mathematical software tools

within the context of algebra learning situations. Tools which support

manipulative algebra and multiple representations of mathematical

objects and processes are now well recognised as means of enhancing

mathematical activity (particularly at post-school levels), but they have

been little explored as tools for pedagogy and instruction. This study

documents the path followed by one teacher (the researcher) as he

systematically studies the use of advanced mathematical software

applications as tools for both pedagogy and exploration. As a

practitioner seeking to improve his own practice through systematic,

reflective and (at times) collaborative activity, the author builds upon

the research foundation offered by the action research tradition (Lewin,

1946, Carr and Kemmis, 1983, Kemmis and McTaggart, 1988a, 1988b)

and blends this approach with the methodological and analytical rigour

offered by the Grounded Theory method (Glaser and Strauss, 1967,

Strauss and Corbin, 1990).
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Learning to Use New Tools Introduction

It is the purpose of this chapter to introduce the principal concerns and

direction of this study. Beginning with a consideration of the nature of

the research design as a blending of action research and grounded

theory, the focus moves from an overview of the role and nature of the

new tools now available for mathematics teaching and learning, to an

attempt to place the learning of algebra in the secondary school within

the context of international, national and state developments since

1980. Attention is then turned to the theoretical bases from which the

study initially springs: the theories of learning which underpin the

approach taken and the research principles which guided the design.

Finally, the unique role of the computer as both focus of study and

primary tool for data collection is considered.

As an action research project, the study begins with the identification

of a problem. In the present context, this problem revolves around the

desire of the researcher as teacher and tutor to “learn to use new tools”

- to acquire skills and knowledge of ways in which algebra software

tools might best be incorporated into individual learning situations, as

tools for pedagogy as well as mathematics. Doing mathematics may be

considered in terms of an interplay between grounded activity and

systematic enquiry (Confrey, 1993a, pp. 51-54). Mathematical software

tools further emphasise this dialectic, as tools naturally linked with

action, and yet supporting and encouraging open-ended exploration of

mathematical ideas. Mathematics learning may also be situated at

various points along a continuum, created by the tension between

instruction (characterised by teacher-centred activities, in which

knowledge is transmitted to the students, who play a largely passive

role in the process) and enquiry (in which students create meaning

from the learning situation as active participants responsible for their
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Learning to Use New Tools Introduction

own learning). The role of mathematical software tools within this

framework is problematic. It is the purpose of this study to explore the

mathematical and pedagogical dimensions of both thinking and action

within algebra learning situations, and to make explicit the role of

technology within the process.

The project follows a series of distinct action cycles through which the

research design is played out and the features and nature of the

problem made explicit (Figures 1.1 and 1.2). The various cycles within

the design may be recognised as occupying distinct dimensional

spaces, aligned with four critical actions which define the study:

(1) the reflections and activities of the researcher himself, which

drive and direct the study;

(2) observations of individual school students learning to use the

available technology as both mathematical  and pedagogical

tools within technology-rich algebra tutorial situations;

(3) collaboration with two groups of preservice teachers, one

group focusing particularly upon pedagogical use and the

other upon mathematical use of the software tools; and

(4) the continuing redefinition of the notion of a technology-rich

learning environment, which provides the context for the

study. Such an environment is seen to be defined in terms of

three critical variables: pedagogical content (the focus of the

learning experience), pedagogical action (the actions of both

teacher and students by which learning is enabled), and the
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Learning to Use New Tools Introduction

nature of the tools themselves, which are open to

development. In this way, the software tools themselves

become an embodiment of the reflections and interpretations

of the research process by the researcher. Each of these

critical variables provides a basis for revision of the learning

environment through the various action cycles of the study.

The overall research design of this study clearly reflects the influence of

action research methods, as a practitioner seeking to improve his own

practice systematically investigates his own use of algebra software

tools, and that of others, through a series of action spirals. Each action

cycle begins with the researcher planning and acting to create a

particular interactional situation - what is termed here a technology-rich

algebra learning environment. Observing and reflecting upon these

observations gives rise to a revised plan, embodied in revisions to the

curricular content, the pedagogical actions or in physical changes to the

available software tools in response to the previous cycle.
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Learning to Use New Tools Introduction

Figure 1.1: The Action Research Spiral
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Figure 1.2: The action research design
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Miles and Huberman argue convincingly that the weakest link in the

chain of qualitative research is that between data and conclusions
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Learning to Use New Tools Introduction

(Miles and Huberman, 1984, Huberman and Miles, 1994). Although

action research provides a powerful methodological foundation for the

study, it offers little to guide the data analysis process.  The grounded

theory method (Glaser and Strauss, 1967, Strauss and Corbin, 1990)

has been adopted for this study, offering a detailed and systematic

approach to the qualitative research process which provides an ideal

complement to the action research methods described above. The use

of a grounded theory approach to the analysis of data supports and

encourages the development of a theoretical framework which is

grounded in the data but potentially applicable beyond the immediate

situation. Such a theory is intended to speak directly to practitioners,

and to offer guidance and direction to both future research and

practice. The merging of action research with grounded theory offers a

powerful research design for the current study, clearly defining the

reflective act so central to action research.

 The focus of a grounded theory design is upon a central phenomenon

(or core category), a slightly different perspective to the significant

problem which gives rise to an action research study. By identifying tool

use within algebra learning situations as the core category, however, the

critical link between the two perspectives may be established. The

central concern of the researcher in the study which follows, then, is

learning to use new tools, initially, on a personal level and,

subsequently, involving the students and preservice teachers who are

drawn to interact with the available software tools within various

algebra learning contexts. All participants share this common goal,

although each approaches it from a distinct perspective. The unifying

phenomenon, or core category, for all participants is that of tool use.
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Learning to Use New Tools Introduction

In particular, this study explores a phenomenon described here as

strategic software use - the deliberate, flexible and goal-directed use of

available tools as a means of increasing understanding and offering

insight into problematic features of the particular learning context.

Such use may be seen to represent an ideal, a high level of attainment

with regard to both the mathematical learning context and the cognitive

tools used within this context - it may be recognised as lying at one end

of a continuum along which may be found various styles and

dimensions of tool use. The defining characteristics of this style of use,

the context within which it occurs and develops, the forms it takes

within the interactional process involving user, tool and object of study,

and the short- and long-term consequences - all are critical aspects of

strategic software use which this study seeks to explicate.

It is hypothesised that thinking and tool use exist within a recursive

relationship - each influencing and significantly altering the nature of

the other. While this influence is likely to be most evident within a

framework of strategic use, it is recognised at the outset that such use

is likely to be rare. Factors which both encourage and inhibit such

strategic use must be made explicit, as must the nature of the use

itself, and its consequences.

The research takes as its principal focus the use of a generic software

type: symbolic manipulation or, more usually, computer algebra

software, by students and student teachers. The use of the software

occurs within the context of an algebraic learning environment created

for this purpose to provide access and direction in the use of these and

other advanced software tools (particularly graph plotting and table of

values utilities). The study seeks to document and explain the ways in
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Learning to Use New Tools Introduction

which individuals use the various tools available, the context of this

use, and aspects of the proposed relationship between tool use and

their mathematical and pedagogical thinking. As such, it is

interpretative in nature and qualitative in design.

The design of the study and the subsequent gathering of data are driven

by four principal research questions. The first two of these define

algebraic thinking and the third pedagogical thinking as the terms are

used for the purposes of this project. The fourth defines tool use as it is

to be considered in the present context.

• What do individuals (researcher, students and preservice

teachers) understand by algebra and its components

(especially functions, variables, equations, graphs and tables

of values) and how might such understandings be related to

the use of computer tools?

• What do individuals perceive when they view algebraic objects

and how may these perceptions influence their choice and use

of available strategies (including the use of mathematical

software)?

• What beliefs do individuals bring with them to algebra

learning situations concerning the nature of algebra, the ways

in which it may best be learned, and the characteristics of

successful learning and effective teaching practice? To what

extent may such beliefs impact upon the use of technology as

a learning strategy?
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Learning to Use New Tools Introduction

• Under what conditions do individuals choose to use available

software tools, and what forms does this use take? What

features of both tool and learning situation serve either to

impede or encourage such use?

These themes of algebraic thinking, pedagogical thinking and tool use

dictate the concerns and direction of the study which follows. They also

preface the structure of the chapters of this book.

The thesis falls into two main sections, Chapters One to Four laying the

foundations in terms of the literature, tools and research design, and

Chapter Five serving as a bridge, setting out the principal categories by

which the data was initially conceptualised and providing insight into

both the researcher’s approach and beliefs and the subsequent

development of a grounded theory of mathematical software use.

Chapters Six, Seven and Eight set out in detail the responses of the

participants concerning issues associated with algebraic and

pedagogical thinking and tool use, as outlined above. Finally, these

results are drawn together using the Grounded Theory paradigm in

Chapter Nine, leading to the development of a rich and interconnected

theory of mathematical software use for the learning of algebra.

New Tools for Mathematics Learning

During the 1970s, the impact of early computer technology made itself

felt upon mathematics instruction in the form of hand-held calculators.

Soon recognised as offering enormous potential for change in the

teaching and learning of mathematics at all levels, there existed at the

same time a reluctance on the part of many teachers to freely embrace
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Learning to Use New Tools Introduction

such tools. Unsure of how to change their teaching so as to effectively

incorporate the new technology, they experienced an initial hesitation

concerning the effects and possible dangers. Twenty years later,

through extensive research and classroom use, many of the early

misgivings have been laid to rest, many of the pitfalls recognised

(Hembree and Dessart, 1992). The scientific calculator is now assured

of its place as an essential adjunct to the learning of mathematics.

This situation seems destined to repeat itself in the 1990s, not with

numerical tools but with algebraic ones. Once more, teachers of

mathematics are presented with a dilemma - the availability of

technologies capable of enhancing the teaching and learning of their

subject, but a lack of insight and clear direction as to how they may

most profit from their use. Once more, “(t)he first instinct of educators

is to couple the new technology to their old methods of instruction”

(Papert, 1980, p. 230). While significant work has centred upon the

potential of computer tools such as spreadsheets and graph plotters

(particularly through the ongoing Technology-Enriched Algebra Project

(Asp, 1991, Asp, Dowsey and Stacey, 1992, 1993a, 1993b) and recent

research by Quinlan (1994)) the potential role of manipulative algebra

software within secondary school settings remains largely unexplored.

Since 1980, computer software capable of performing all of the

algebraic manipulations required for high school and beyond has been

available for microcomputers. Initially designed for use by engineers,

scientists and research mathematicians, such tools, though powerful,

were difficult to learn, and largely unsuited to the secondary classroom.

Early “computer algebra systems” have given way to a more

sophisticated and appropriate tool in the last five years, capable of the
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representation and manipulation of mathematical functions in at least

algebraic and graphical forms. Further, recent software has been

designed to present these mathematical objects using correct

mathematical notation, thus removing the need for students to learn a

“computer algebra syntax” in addition to the algebraic syntax already

required of them. By allowing the user to select items from menus,

templates or palettes, and so to construct and manipulate

mathematical expressions with relative ease, such tools at last appear

appropriate to incorporate into high school learning situations.

“Enhanced computer algebra software” in its various forms allows the

user to represent functions algebraically, graphically and numerically;

ideally the user may move interactively between these representations.

Additionally, some manipulation of these forms is possible. The

algebraic representation, for example, may be rearranged, expanded,

simplified and, in some cases, factorised. It may be differentiated and

integrated, numerically and often symbolically. Exact arithmetic

calculations are often possible, allowing work with fractions, surds and

complex numbers in exact forms, or to any desired degree of accuracy.

The graphical form may be rescaled by adjusting the “viewing window”;

“zooming” in or out to allow the function to be observed in a wider

context, or in finer detail. Points of interest may be isolated and

identified. Equations may be solved graphically or algebraically. The

power of computer algebra is linked to the versatility of the graph

plotter. The computer becomes a means of exploring the nature and

properties of the functions which make up the larger part of the study

of mathematics at the higher levels, and of relieving much of the

syntactical burden which proves a barrier for many learning algebra.
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The availability of such tools presents enormous implications for

change in the ways in which mathematics may be learned. Much of the

time spent in high school mathematics courses currently arises from

the perceived need for students to acquire relative mastery of the skills

of algebraic manipulation. The increasing availability of computer tools

which will perform these manipulations more quickly and accurately

than was previously possible suggests that such time may be spent

more profitably in other ways. In particular, reducing the time spent on

the mastery of manipulative skills may allow more time to be spent on

activities which will aid in concept development and understanding,

and on the applications of mathematics to “real-world” situations (Heid,

1988, 1989). Such features appear sadly lacking from most senior

mathematics courses, both here and overseas (Tobin and Fraser, 1988,

pp. 77-79).

The use of such computer technology permits three fundamental

advantages which would otherwise be too difficult, or quite impossible

to achieve within more traditional mathematics learning situations:

• New Modes of Representation: The use of computer tools

facilitates a variety of representations which may serve to

deepen understanding and encourage investigation.

• Power of Calculation: Computer tools are capable of

performing both numerical and symbolic manipulations

quickly and accurately, freeing students to focus upon the

context and meaning of the problem situation, and to

investigate applications which might otherwise be too difficult

or inaccessible to them.

• Interactivity: Computers are dynamic tools, quite distinct from

the passive aids which characterise many school experiences.
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The ease with which the student may direct and control the

computer, accessing powerful mathematical features further

justifies their inclusion in the curriculum.

The parallels with the advent of hand-held calculators are precise.

Activities devoted to particular skill development, such as the long

division algorithm, were found to require a disproportionate amount of

class time. The decreased emphasis upon such skills which has

resulted from the widespread use and availability of calculators has

freed such time for other purposes. It seems likely that tools capable of

algebraic manipulation and the multiple representation of functions

may also become a means of freeing up the curriculum for activities

determined to be more appropriate than the repetitive skill development

which is currently the norm.

Finally, such tools call into question existing assumptions regarding the

nature of teaching and learning in mathematics. Instructional practices

which have been considered successful and, in many cases, “expert”,

are being challenged by this technology. All too often, such practices are

being exposed as encouraging rote learning and superficial

understandings (see, for example, Schoenfeld, 1988). Those who have

relied upon these practices may well feel threatened by recent calls to

incorporate the new technology as one means of increasing the

emphasis upon understanding and conceptual development in

mathematics learning.

This study potentially offers new knowledge of the ways in which those

learning algebra engage in the use of available software tools. Such

considerations are critical in seeking to understand ways in which such
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tools may be effectively used as means to increase understanding and

enhance algebra instruction at all levels.

Algebraic Thinking in Secondary Schools

The teaching and learning of algebra in the secondary school have

become objects of increasing attention worldwide over the past decade.

The beginning of the 1980s appeared to be a time of great resolve and

desire for change in the international mathematics education

community, typified by the large-scale Concepts in Secondary

Mathematics and Science Project (C.S.M.S., 1980-82) and the Cockcroft

Report (1982) in Great Britain, and the National Council of Teachers of

Mathematics (N.C.T.M.) Agenda for Action (1980) in the United States.

More recently, the release of the N.C.T.M. Curriculum and Evaluation

Standards (N.C.T.M., 1989) and, here in Australia, the Australian

Education Council’s documents, A National Statement on Mathematics

for Australian Schools (Australian Education Council, 1990) and the

subsequent National Mathematics Profiles (Curriculum Corporation,

1993) suggest that the momentum has been sustained. Australian work

on “concrete approaches to algebra” (Booth, 1989, Quinlan et al, 1989

and Pegg and Redden, 1990) appear to be indicative of recent research

efforts. Certainly, with their inclusion in recently released Syllabus

documents in New South Wales and Queensland, and consequently

their inclusion in the new generation of textbooks for junior

mathematics, there are hopeful signs that teachers may begin to move

away from the traditional “rote learning” approach to the teaching of

algebra.
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The National Statement on Mathematics for Australian Schools

(Australian Education Council, 1990, pp. 187-189) describes algebra at

all levels of schooling as serving three fundamental purposes:

• Expressing generality : As the primary means by which we

may describe and understand patterns and generalisations in

a multitude of situations.

• Describing Functions : Providing the means by which

functional relationships may be defined and represented

using a variety of forms, especially numerical, graphical and

symbolic.

• Solving Equations : These form the essential mathematical

problem solving tools by which problem situations may be

analysed and described mathematically, and then redefined in

a simpler or more accessible form.

Distinguishing between the “syntax” of algebra, in terms of the rules

and manipulations which govern its use, and the “semantics” (the

meaning and context of algebraic activities), school mathematics has

been dominated by the former. A critical pedagogical role of computer

algebra, then, may lie in its ability to perform the syntactical operations

of algebra, and so to allow greater emphasis upon context, meaning and

applications. Used appropriately, it should also permit students

increased opportunities for reflection upon the processes involved,

rather than being absorbed by the manipulations themselves.
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While there are grounds for optimism that algebra learning in the junior

school may be expected to become more concrete and, hopefully, more

meaningful for students, there appears to be little of the same pressure

at the higher levels. Middle school mathematics courses (Years 9 and

10) are still dominated by skills of manipulation, largely in preparation

for the requirements of the calculus in the senior school. Students

attempting the calculus-based courses in Years 11 and 12 are expected

to be proficient in algebraic manipulation, possibly to the exclusion of

other skills. Students without solid grounding in this area may not be

expected to succeed, even at the “average” senior level (which, in New

South Wales, is the 2 Unit Mathematics course).

With retention rates into senior education in Australian schools

reaching 80% and with ever-increasing requirements for tertiary

entrance and employment, schools are feeling growing pressures to

admit students to such courses who would not previously have been

considered. Enrolment patterns in senior mathematics courses offered

in New South Wales over the period from 1983-93 may be considered

representative of those in other Australian states, and are depicted in

Figures 1.3, 1.4 and 1.5 (see Appendix A for the corresponding

numerical information). The graphs illustrate the percentages of the

total student candidature for that year attempting the four courses

available (Figure 1.3), the actual numbers of students for each course

(Figure 1.4) and, finally, the percentage increase for each course over

the eleven year period.
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Figure 1.3: NSW HSC Mathematics Courses 1983-93:

Percentage of Total Candidature
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Figure 1.4: NSW HSC Mathematics 1983-93: Numbers of Candidates
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Figure 1.5: NSW HSC Mathematics Courses 1983-93:

Percentage Increase
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Of the four courses offered, the Mathematics in Society course is a non-

calculus option, considered as a terminating course for purposes of

tertiary mathematics study. (A fifth course was offered for the first time

in 1991, intended for students at a lower level than that catered for by

the Mathematics in Society course. This course, Mathematics in Practice,

accounted for only about 5% of the candidature in 1993.) Those courses

labelled 2 unit, 3 unit and 4 unit are provided as tertiary preparation

courses for mathematics, and are characterised by increasing breadth

and depth of content. Of critical significance with regard to

interpretation of these graphs is the large increase in the total

candidature in mathematics for the Higher School Certificate over this

period, from 31,448 students in 1983 to 57,709 in 1993. This is

indicative of the increasing enrolments across all subject areas in the

senior years over this period.
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Within the context of this increase in overall numbers, the graphs

reveal significant changes in enrolment patterns. The greatest increase

over this period has occurred in the Mathematics in Society course.

Although the 2 Unit course still accounts for the highest overall

proportion, it has dropped significantly in this regard. Clearly, the

majority of the “new” students (those who would probably not have

continued on to senior study in 1983) are enrolling in the less

demanding course. At the same time, the actual numbers of students in

all courses have increased - there are physically more students

attempting all mathematics courses than there were a decade ago.

Interestingly, the greatest increase overall (when balanced against the

increased student population) has occurred in the highest course, the 4

Unit course. It seems likely that syllabus changes to this course in 1986

served to make it more accessible than previously; it has also benefited

from a significant scaling advantage when scores for tertiary entrance

are computed.

 Within the secondary school, algebra has traditionally served as a

“gatekeeper” for study at the higher levels, performing in many

instances a deliberately discriminatory role in separating students. Just

as a lack of proficiency in numerical skills may serve to deny many

students opportunities to engage in mathematical content areas

available to their peers, so too does poor algebraic facility. As hand-held

calculators have served a scaffolding role, supporting students in their

study of these aspects of mathematics previously denied them, so too

may algebra software expand the options for many, not just in the

senior years, but across the secondary school and perhaps beyond.

Questions as to the effectiveness and potential of advanced
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mathematical software tools in the learning of algebra, then, become

both educationally and socially relevant.

Theoretical Frameworks

In seeking to describe and understand the ways in which students and

teachers think about and use advanced mathematical software, and the

consequent effects of such use, the role of theory is perceived to be one

of providing initial guidance and direction in a fledgling field of enquiry.

In the model developed for this study, the computer is perceived as

being, at the same time, both focus and method of enquiry. Advanced

mathematical software, as it is used by individuals involved in

mathematics learning, provides the principal target for description and

explanation. As the primary mode of data collection in the research

design, the computer, too, becomes the central means of enquiry, as it

provides an ideal tool by which such interactions may be made explicit.

No single theoretical model appears sufficient to provide description

and explanation at a suitably rich and meaningful level. Rather, a

melding of several compatible and complementary theories of learning

and cognition allows the complex interactions of individual and

technology to be categorised in ways which illuminate different aspects

of the process. Thus, at what might be considered the “micro” level, the

SOLO taxonomy (Biggs and Collis, 1982, 1991, Collis and Biggs, 1991,

Collis, Watson and Campbell, 1992) provides a detailed descriptor, not

only of the various modes of thinking which characterise the cognitive

activities of different individuals at different times, but also of the

developmental sequence occurring within each of these modes. The

taxonomy fails, however, to provide adequate explanation for the ways
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in which learners move between the various modes of thinking, and the

potential role of teacher (and technology) in assisting such transition.

A theory of learning proposed by Pierre van Hiele (1986), specific to

mathematics education, offers a different perspective on the modes of

thinking, but one which is consistent with that of the SOLO taxonomy.

There is, in this way, the possibility for an increased richness of

description as each theory illuminates the same aspects from a

different angle, each casting light upon features which the other may

fail to fully accentuate. Further, van Hiele is concerned primarily with

the role of the teaching process in the transition between levels of

thinking, and offers much in the search to explain the ways in which

teacher and technology may work together in facilitating student

learning and understanding. The van Hiele theory, then, offers a means

to paint with broader brush strokes, observing and seeking to explain

the movement across modes of thought and styles of learning.

Although both the SOLO Taxonomy and the work of the van Hieles were

inspired by the ideas of Piaget, both perspectives recognise the critical

importance of the learning context in seeking to understand the learner.

The van Hiele theory goes further still, considering the process by

which appropriate teaching may contribute to cognitive development,

and the critical role of language in the learner process. In this respect,

the work of van Hiele has appeared to move closer to that inspired by

the Soviet psychologist, Lev Semanovich Vygotsky (1962, 1978, 1987).

These theories consider learner as inseparable from context,

particularly the social and cultural context in which learning occurs.

Vygotsky believed that all higher cognitive processes are acquired

initially through social interaction - occurring on an inter-personal level
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before they become internalised to occur on an intra-personal level.

Although he made no specific mention of the role of computer

technology (since such technology did not exist in the early years of this

century when his theories were developed), Vygotsky’s views appear to

offer much which inform a consideration of the ways in which

individual learning may be enhanced by the use of suitable tools in

appropriate contexts. Further developments of Vygotsky’s work by

Bruner (1968, 1986) and Wood (1980, 1986) provide means for detailed

analysis of individual learning within collaborative and tutorial

situations, particularly relevant to the present study.

Finally, as a means of describing and understanding the ways in which

people learn, and ways in which people learn mathematics in

particular, principles of constructivism provide a firm and broad

foundation. From a constructivist perspective, learning is not achieved

through the transmission of knowledge from teacher to students;

rather, each student constructs his or her own meaning from the

learning experiences encountered, meaning which undergoes a process

of personal and social negotiation before it is internalised. Traditional

exposition models of instruction assumed that the same message was

received by the thirty or so different students to whom it was

transmitted; constructivism denies the likelihood of such uniformity. A

single instructional message may well be interpreted in many different

ways. The teacher’s role must still involve providing meaningful and

carefully planned learning experiences; of even greater importance,

however, becomes the responsibility for providing the means by which

students may question what they have experienced, may compare and

contrast their perceptions with others (especially their peers) and may
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negotiate meaning which is consistent with their existing

understandings and with those intended by the teacher.

When viewed from the Piagetian perspective of constructivism, the

process of learning becomes a spiral of equilibrium -> disequilibrium ->

re-equilibrium. The role of the teacher, in such a view, is to attempt to

induce “perturbations”, creating just enough disequilibrium in the

learners to encourage re-equilibrium (Doll, 1986):

The teacher must intentionally cause enough chaos to motivate the student to
reorganise. Obviously this is a tricky task. Too much chaos will lead to
disruption (Bruner, 1973, Chapter 4), while too little chaos will produce no
reorganisation. (p.15)

The traditional “sequence” of instruction assumes learning to be linear

and common to all learners within the group. A constructivist view,

however, presents human learning as complex and branching, not

simple and linear. Individuals learn in different ways: not all at the

same times, nor in the same straight lines. The powerful branching

features available through a program such as HyperCard makes such

learning a very real possibility within mathematics learning situations.

Students working through instructional sequences developed in this

way might be expected to do so in different ways, at different rates, and

to make different decisions along the way, concerning their style of

investigation, and their path through such a program.

A Blending of Research Approaches

There are some who might argue that the present study is

inappropriately classed as action research. Educational action research

as it has been practised here in Australia has been increasingly
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identified with that practised by those associated with Deakin

University from the early 1980s to the present time (Kemmis and

McTaggart, 1988a, 1988b). Arising from a sense of frustration with “the

distance between the exigencies of practice and psychometric

approaches to educational research” (McTaggart, 1991b, p. 44) and

wanting to “work more closely with teachers, consultants, parents and

students” (McTaggart, 1991b, p. 44), their interpretation of action

research borrowed heavily from critical social science in “trying to make

schools and systems more reasonable, more just and more humane for

students” (McTaggart, 1991b, p. 44).

The institutional focus implied in this view was quite deliberate.

McTaggart notes disparagingly that “some educators working alone and

following the technical imperatives of ‘the action research spiral’ felt

they were doing action research” (McTaggart, 1991b). She goes on to

state that

as our work focused on the theoretical development of the rationale for action
research... the need to specify minimum requirements for action research - the
axiomatics of action research praxis - became paramount... In order to develop
the rationale and purposes of action research, finer distinctions became
necessary, and the language of action research became more sophisticated, and
more conscious of concepts drawn from social theory (p. 44).

The present study appears by such a definition to lie outside the realm

of “legitimate” action research, damned by its individual focus and its

non-institutional context. The very notion of “legitimate” action

research, however, appears contrary to the fundamental principles by

which it was conceived, and critics of this view, such as Gore (in

McTaggart, 1993a, p. 43), “claim that certain specialist discourses have

occupied the action research ground and have served to disempower

‘practitioners’”.  As Gore herself notes (Gore, 1991),
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‘Action research’ as understood in teacher education circles, connotes specific
practices. Given the wide range of practices that go by the name, however, it is
clear that the term has no meaning outside its construction in particular
discourses. If this statement is accepted, then rhetorical attempts to reserve the
label for a particular set of practices ... are predestined to fail, functioning
instead to police discursive boundaries (p. 47).

It is possible that the focus upon theoretical principles, the increasingly

sophisticated language drawn from social theory and the perceived need

to specify minimum requirements for action research described by

McTaggart above may well have had the effect of distancing it from the

very practitioners for whom action research was created. Denying any

group ownership of a research method, the present study lays firm

claim to the label, action research. While individual in focus and

occurring outside a formal institutional milieu, nonetheless the primary

concerns of practitioner seeking to improve his own practice through

systematic application of cycles of action, observation and reflection

justify such a claim.

Giving form and direction to the reflective act, and central to the

analysis of data gathered for this study is the grounded theory method,

in which the primary purpose of the research design is the generation of

theory which is developed directly from the data - in this case, a theory

of mathematical software use in the context of algebra learning. As

defined by Strauss and Corbin (1990):

... (a) grounded theory is one that is inductively derived from the study of the
phenomenon it represents. That is, it is discovered, developed, and provisionally
verified through systematic data collection and analysis of data pertaining to
that phenomenon. (p. 23)

The originators of the grounded theory approach defined four central

criteria by which such theory may be judged (Glaser and Strauss,1967,

pp. 237-250): fit (the extent to which the theory reflects and is faithful
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to the reality expressed in the data); understanding (the extent to

which it reflects the realities of the practitioners and is congruent with

their perceptions); generality (in the sense that the theory should be

abstract enough to be applicable to a variety of contexts appropriate to

the phenomenon), and control (being the measure of appropriate action

towards the phenomenon which flows from and is directed by the

theory) (Strauss and Corbin, 1990, p. 23).

The theory generated by this approach may be expected to fulfil

traditional empirical requirements of significance, reliability and

validity, arising as it does from a systematic analysis of the reality as

reflected in the data. Through detailed and extensive analysis of both

the categories by which the phenomenon may be recognised and, more

importantly, the network of relationships which link these, the

approach may be expected to yield results which are conceptually dense

and rich in both descriptive and predictive power. Again, from Corbin

and Strauss (1990):

Its systematic techniques and procedures of analysis enable the researcher to
develop a substantive theory that meets the criteria for doing ‘good’ science:
significance, theory-observation compatibility. generalisability, reproducibility,
precision, rigour and verification. (p. 31)

Lying at the heart of the Grounded Theory method is what the authors

refer to as “the Paradigm Model”, a method by which subcategories may

be linked to a category in a set of relationships which place it into a rich

and well-defined analytical context (Strauss and Corbin, 1990, p. 99).

In simplified form (and within the context of the present study) this

model may be represented as:
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(a) CAUSAL CONDITIONS -> ....................... Events leading to occurrence of...

(b) PHENOMENON ->.................................. Using the software...

(c) CONTEXT -> .......................................... The algebra learning situation...

(d) INTERVENING CONDITIONS -> ............ Impediments and Imperatives...

(e) ACTION/INTERACTION STRATEGIES-> Form of the interaction...

(f) CONSEQUENCES ->............................... What are the results?

Mapping the major categories of the study in these terms forms the

basis for more intensive theoretical interpretation of the data. Ideally

suited to this task is the qualitative analysis software tool, NUD•IST

(Richards and Richards, 1993) which encourages and supports the

creation of logical trees and networks of relationships to form an index

system by which the analysis may be defined. The program appears to

offer an ideal complement to the grounded theory approach, supporting

the detailed and yet extensive analysis demanded for the generation of

substantive theory. NUD•IST is used in the present study to initially

support the coding of data using broad general categories (People,

Words, Actions, Tools and Content). These broad categories reflect the

initial conception of the project on the part of the researcher.

Increasingly fine detail in the coding is then facilitated by the retrieval

capabilities of the program, and the “Index System” develops as a direct

result of the analysis of the data. Finally, categories and sub-categories

may be moved easily to reflect the growth towards a theoretical

structure which results from the application of Grounded Theory

procedures. More detailed description of this process is provided in

Chapters Four and Five.

The study centres upon the core category of mathematical software

use. It is the primary purpose of the project to describe, explore and
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explain this phenomenon within the context of algebra learning

situations and so to learn to use these new tools as supports for

effective learning. Causal conditions for this phenomenon will include

features of the particular algebra learning situation which lead to the

use (or non-use) of available software tools. These may be recognised as

particular events or conditions which give rise to specific interactions

between users and tools.

The context is concerned with the conditions under which the

phenomenon manifests itself. Characteristics of the user and the

learning situation are critical. Intervening conditions are broader,

more general aspects which influence the interactions. These may serve

as either impediments or imperatives (hindering or encouraging tool

use).

The actual tool use may be considered in terms of action/interaction

strategies and these taken together with the various antecedent

conditions will help to determine the particular consequences which

result. Analysis in these terms will be applied to, not only the central

phenomenon, but each of the major categories and subcategories which

arise from the data. In this way, the generation of theory will be both

intensive and extensive in relation to the phenomenon in question.

The Computer as a Research Environment

Seymour Papert, the creator of LOGO, once described the computer as

the “proteus of machines”, with the potential to be all things to all

people (1980). While such a claim is somewhat expansive, within the

domain of educational research, and particularly with regard to
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research of the type suggested above, the computer offers unique and

exciting possibilities. When used within a flexible programming

environment such as that offered by HyperCard, it becomes possible to

use the computer as a means of studying itself - or at least the

interactions of teachers and students with it.

As a means of capturing the interactions of individuals with available

technology, a unique research instrument was developed for this study.

Based in HyperCard, the program consists of three major components:

(1) A series of interactive instructional modules, spanning

content and processes across the secondary years, within

which computer algebra, graph plotting and tables of values

tools are available, and their use encouraged. The program

provides immediate access to external software tools which

accompany and extend the instructional process, encouraging

free exploration of the ideas and processes under

consideration.

(2) In addition to the external software tools, a “mathematical

toolkit” (called the MathPalette) is provided within the

program, making available an extensive range of supportive

functions which include graph plotting, tables of values,

equation solving, coordinate geometry features (midpoint,

gradient, distance and equation of a line through given

points), numerical substitution, derivatives and areas under

curves. The usual symbolic, graphical and numerical

representations by which algebra learning is increasingly

enhanced are supplemented within the program by an
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interactive “concrete algebra” mode, by which algebraic

expressions and equations may be created and acted upon

using concrete representations. These facilities are intended

to further support and encourage open-ended exploration of

algebraic ideas and processes within the context of the

instructional modules and beyond.

(3) Additional to these mathematical components of the program

are specific research components, designed to generate

appropriate research data related to thinking and tool use.

The “research questions” which accompany the instructional modules

consist of a series of specific tasks, intended to reveal aspects of

mathematical and pedagogical thinking on the parts of those using the

program. These tasks range from open-ended “Grand Tour” questions

(Spradley, 1980) such as “Describe a typical maths lesson” to the

Likert-style Constructivist Learning Environment Scale (Taylor and

Fraser, 1991). Cards portraying a range of visual algebraic images are

used to generate verbal responses; the cards are then grouped by

participants (after Stein, Baxter and Leinhardt, 1990). In several cases,

these images are then used as the basis for a Repertory Grid analysis

(after Kelly, 1955), potentially providing further insight into individual

thinking and understanding of algebra. A simple attitude scale is also

included, adapted from Quinlan (1992). Each of the various research

components designed for the purposes of this project have been

adapted to a computer-based format using HyperCard, allowing entry

of data in a format consistent with that of the overall research design.

Page 31



Learning to Use New Tools Introduction

The “research version” of the program has been enhanced through the

addition of three features, labelled “comments”, “prompts” and

“probes”. At any time during a session, the user is encouraged to make

comments regarding the program, the ideas encountered, their own

responses, and so on. These comments are recorded along with the

other research data from that session: which cards are viewed, which

buttons are pressed, which functions are entered, graphed or analysed

in other ways; times for each of these activities are also recorded.

“Prompts” are questions posed within the context of the instructional

module, which the user is expected to answer. They may also take the

form of suggestions as to the possibilities for the use of computer

algebra, or graph plotting or table of values tools at particular points.

Finally, “probes” have been added at certain critical points in the

modules. When users access a computer algebra tool, or graph plotter,

or table of values, for example, they will be asked afterwards what their

intentions were in this regard, and how effective they found the tool to

be. When first selecting particular modules, such as the “Beginning

Algebra” module, student teachers will be probed regarding the way in

which they would sequence an introduction to algebra themselves at

present; this may be compared with a similar probe at the conclusion of

the module. Students are probed as to their understanding of key

concepts, such as “function”, “variable” and “equation”, in addition to

their attitudes towards mathematics, and their own assessment of their

abilities in this regard. The research tool, then, provides a means,

within an instructional framework, of studying the interactions of

students and student teachers with mathematical software tools.

The research design is that of case study, focused upon individuals

working through the instructional materials, and providing additional
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research data related to preferred images and representations of

algebraic concepts, facility and understanding of algebraic

manipulations, as well as attitudes and beliefs concerning pedagogical

factors related to algebra learning. Responses are then coded and

analysed using qualitative research software (NUD•IST) allowing

regularities and relationships within the data to be observed and

explained. Further, NUD•IST supports, not only the retrieval of data

according to the codes and categories applied, but also the development

of the Index System which defines the analysis of the data. While

coding begins at a general level, it becomes increasingly refined as the

data retrieved from each general code is recoded in finer detail,

consistent with the grounded theory approach. Finally, these categories

and sub-categories may be moved around and positioned in relation to

each other, allowing the building up of a complex and intricate

theoretical structure which becomes the grounded theory itself.

The grounded theory approach has been applied to the analysis of data

in order to offer findings which are integrated, detailed and rich in

explanatory power. The theory of mathematical software use which this

study explores is intended to offer both detailed explanation and

generalisability within the confines of the chosen research design. The

overarching action research design further supports the ongoing

development of a computer-based technology-rich learning environment

for the learning of algebra across the secondary school years. It is

anticipated that these twin outcomes of the research design will offer

guidance and direction to teachers who would use mathematical

software tools as means to enhance algebra learning within other

settings.
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Two

Review of
the Literature

First we must see how the teaching and learning of traditional topics can be
improved with the full use of technology. Can these topics be taught better,
faster, and with greater student understanding? When this question has been
answered, curricular issues can be addressed.

(Waits and Demana, 1988, p. 332)

Seymour Papert (the creator of LOGO) dreamed of the computer as

providing the basis for a “mathland”, “which is to mathematics as

France is to French, where children would learn to speak mathematics

as easily and as successfully as they learn to speak their native dialect”

(Papert, 1980, p. 230). Over a decade later, his dream remains far

removed from the realities of the vast majority of schools and

classrooms. The reasons for this lack of impact are diverse. They

include concerns associated with computer technology, such as access,

availability and cost, appropriateness and ease of use of both software

and hardware. They include also characteristics of the teachers and

learners who would use mathematical computing technology - from

traditional ways of viewing and doing mathematics to the difficulties of

bringing about change in schools and classrooms.

The review of the literature which follows seeks to provide an overview

of issues associated with incorporating technology into the related
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processes of teaching and learning mathematics. In so doing, it

establishes a clear direction for the course of the project which follows.

The major focus in this study is the use of advanced mathematical

software (particularly computer algebra software) by students and

student teachers, and the interactive relationship between thinking and

action in this context. In order to bring this broad area into a sharper

perspective, responses of the participants will be analysed using the

SOLO taxonomy (Biggs and Collis, 1991, Collis and Biggs, 1991) and

the van Hiele model (1986). These methods are intended to make

explicit both modes of representation of algebraic ideas and levels of

thinking within an algebra learning context.

Ways in which the technology may contribute to improvements in the

development of key concepts such as “algebra”, “equation”, “function”

and “variable” will also be considered, particularly in the light of recent

work in this area by Sfard (1991, 1992, 1994) and more established

work by Bruner (in Bruner and Anglin, 1973). An overarching influence

in the analysis of individual interactions with the software tools is that

arising from the work of Vygotsky, particularly as it has been applied

and extended to the description of collaborative and tutorial learning

situations by Bruner (1968) and, more recently, Wood (1980, 1986).

Since data collection for this project occurs as a result of individuals

interacting with the software in tutorial or collaborative situations,

these “scaffolding” studies are most appropriate.
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Computer Algebra Software as a Tool for Learning

The potential for computer algebra systems to enhance the teaching

and learning of mathematics has tantalised educators now for more

than a decade. Some seventy articles and dissertations dealing

specifically with computer algebra have been identified in twenty

different journals and numerous books; the vast majority of these have

been published in the past three years. Of these, however, only

nineteen describe the results of research in this area and only six

studies involved secondary students (Boers, 1990, Rosenberg, 1990,

Sheets, 1993, Wood, 1991, Yerushalmy, 1991a, 1991b) . The increasing

volume of publications in this field points to a growing interest and

awareness of the possibilities for the use of such powerful tools; the

lack of research evidence as to the effects of such use points further to

a growing need in this regard.

Computer algebra has been available for personal computers since

1980, in the form of muMATH, a powerful symbol manipulator which,

through innovative design, was capable of performing exact arithmetic,

calculus and much of the symbolic algebra required from school

through university - all using only 64 kilobytes of random-access

memory! Compared to modern computers which frequently access more

than 4, 000 kilobytes, this was, even by present standards, a

remarkable achievement. Inexpensive (at $US40), versatile and

powerful, muMATH stimulated enormous interest among groups of

mathematics educators who saw it as potentially capable of influencing

mathematics curricula away from the repetitive focus upon

manipulative skills which had so characterised instruction in the past
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(Fey and Heid, 1984, Fey and Good, 1985, Coxford, 1985, Ralston,

1985). This theme was pervasive through both the National Council of

Teachers of Mathematics’ Yearbooks in the middle of the decade,

Computers in Mathematics Education (Hansen and Zweng, 1984) and

The Secondary School Mathematics Curriculum (Hirsch and Zweng,

1985), and recurred again in the 1988 Yearbook, The Ideas of Algebra,

K-12 (Coxford and Shulte, 1988). muMATH provided the focus for

numerous publications which described its potential for enhancement

of such diverse areas as engineering analysis (Lance, Rand and Moon,

1985), secondary school algebra (Beard, 1989), solving differential

equations (Mathews, 1989b), teaching the fundamental theorem of

calculus (Mathews, 1989c) and, of course, teaching general calculus

(Freese, Lounesta and Stegenga, 1986, Mathews, 1988, 1989a).

For all its power and affordability, muMATH has had a negligible effect

upon mathematics classrooms in secondary schools. This is partly

because it was not easy to use (with an enormous vocabulary of

commands which required frequent reference to the manual) and it had

no graphics capability; teachers also had no clear guidelines about the

use of such tools. The inherent difficulties and essential

inappropriateness of the program for use in schools were sufficient

reasons for teachers not to persevere with its implementation.

In recent years, muMATH has made way for a new generation of open-

ended symbolic manipulation software, equipped in most cases with

such essential features as graphics capabilities, true mathematical

formatting, intuitively simple command structures and extensive

mathematical capabilities. Such tools are referred to here as “enhanced
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computer algebra tools”, and include programs such as Mathematica,

Maple V, Derive, Theorist, MathCAD, Milo and, here in Australia,

SymbMath. These tools vary widely in their costs and capabilities, but

all are capable of performing the majority of algebraic manipulations

and algorithms required for the secondary school and beyond. Less

powerful software, such as CC - the Calculus Calculator, CoCoA and

MathMaster also provide access to many of the same functions as the

more powerful programs of this type, but at minimal cost.

In seeking to explore the use of computer algebra software in

mathematics teaching and learning, cost is but one of a number of

relevant factors. The lack of impact of such tools over the past decade

needs to be viewed in terms of both hardware and software constraints,

in addition to issues of access and availability of computing technology

in schools.

Computer algebra is extremely intensive in its memory demands. The

complex algorithms and numerous calculations required for computers

to carry out symbolic manipulation have generally required computing

power beyond the reach of most schools. The rapid increases in both

available memory and raw computing power of the past few years,

however, now see affordable computers capable of operating such

software. The release of low-cost computers for both Macintosh and

MS-DOS operating platforms means that the hardware required for

most of the existing computer algebra tools is now reaching schools and

classrooms.

While memory requirements and cost of hardware are obviously
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significant factors with regard to the use of advanced mathematical

software, they are insufficient to explain the lack of impact of the past

decade, since programs such as muMATH has been available and

affordable for this period. Another critical factor, then, lies in the nature

of the software itself. As noted above, programs such as muMATH may

be impressive mathematically, but they fall short when examined

pedagogically. If computer algebra is to be accepted into secondary

classrooms, then a number of critical features should be present.

The inclusion of a graphics facility has already been mentioned, and the

power of the graphical representation in facilitating the learning of

much of school mathematics is now well established, both by research

and classroom experience (Arnold, 1991c, Demana and Waits, 1988a,

Dugdale and Kibbey, 1990, Fey, 1989, Kaput, 1986, 1993, Kissane,

1995, Ruthven, 1990, Tall and Thomas, 1989, Waits and Demana,

1989a, 1989b). Care needs to be taken with the early use of graph

plotting software (and the hand-held equivalents) (Demana and Waits,

1988b, Goldenberg, 1988a, 1988b); intensive studies by Goldenberg

(1988a, 1988b) and Demana and Waits (1988b) demonstrate the

dangers of misinterpretation of graphical information, especially in the

early use of such tools. Particular problems have been found associated

with inadequate labelling of axis information, leading to poor

representation of scale on the part of students. Similarly, interpretation

of images viewed through a restricted “viewing window” was found to

cause problems among less experienced users. Students who use such

tools exclusively may also fail to develop skills and understandings

which appear to arise from the physical actions associated with plotting

and drawing graphs (Asp, Dowsey and Stacey, 1993a, pp. 53-55).
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Thoughtful use of the graphical representation of functions, however,

has been shown to be a powerful aid to understanding and concept

development in secondary and tertiary mathematics (Goldenberg,

1988a, 1988b, Kaput, 1993, Leinhardt, Zaslavsky and Stein, 1990). In

an extensive review of research within the domain of functions and

graphing, Leinhardt et al emphasised the importance of establishing

bidirectional links between the graphical and the algebraic forms of

functions: “In fact, we might say that this correspondence is the thing

to be learned” (p. 54). Additionally, the ability of a program to present

tables of values for functions may also prove to be of significant

advantage in encouraging students to become more versatile in their

conceptions (Heid and Kunkle, 1988, Tall and Thomas, 1989, 1991).

Such multiple representation software has been shown to encourage

greater facility with problem solving and functional representations,

and to lead to more robust concept development with regard to

functions and variables (Afamasaga-Fuata’i, 1992, Arnold, 1992d,

Borba, 1993, Harel, 1989, Schoenfeld and Arcavi, 1988, Yerushalmy,

1991b).

Another representational consideration concerns the formatting of both

mathematical input and output. It is still common for students to be

required to enter mathematical expressions using “computer syntax”

rather than true mathematical notation. Even such powerful programs

as Mathematica and Maple V suffer from this failing, although once

entered, the input is converted to a reasonable semblance of

mathematical formatting. Such programs also use a “command-line”

format for instructing the computer: the user must type in the required
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command in the correct syntax (which usually involves ending with a

semi-colon or some other device to signal to the computer that it is time

to act). While it may be argued that there is some benefit in

encouraging students to enter instructions carefully and correctly, the

increased difficulties caused by this approach appear to act as a

liability for use in secondary schools - especially if students and

teachers are forced to memorise the commands required to operate the

program. Programs such as Theorist, Derive and Milo have minimised

this problem through the use of menus and templates, from which the

user may select, not only the commands required, but also the

notational syntax. There is no need for the user to learn arcane

commands or syntactical conventions which vary from program to

program, and input and output are both presented in correct

mathematical form. Such a feature must be a strong consideration in

choosing a program for use in the junior secondary years, and should

prove useful with older students as well. In terms of this study, the

choice of Theorist Student Edition and Derive as the preferred software

tools was made based primarily upon ease of use and cost factors.

Closely related to the ease of use of available software tools is a sense of

personal ownership on the part of the user. Smith (1992) distinguishes

between two different senses in which the computer may serve a

mediating role between the individual and the mathematics which is the

object of attention. The first, which he terms the Social Constructivist

Model, builds upon the Vygotskian notion of cognitive action within a

social and cultural context. Within this framework, the image of

“computer as intellectual partner” (Smith, 1992, p. 15) is illustrative of

a particular mediating role in which child and computer together act
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upon the mathematics which is “out there”. This culturally situated

mathematics also impacts upon the user in a cyclic way (Smith, 1992,

p. 18). Distinct from this model is that which Smith designates the

Individual Constructivist Model, in which the computer, like the

mathematical situation, is perceived as being external to the user - the

computer is something to be acted upon, just as is the mathematics

(see Figure 2.1). Both are external to the user, whereas within the

Social Constructivist framework, the computer is a personal tool. Dick

(1992) makes a similar connection involving student use of hand-held

calculators which, by reason of size and personal ownership are more

readily accepted as tools.

This distinction between ways in which the computer is perceived and

used by individuals is seen as critical to the current study, and

provides a significant area of focus within the research design.

Figure 2.1: Smith’s (1992) distinction between

personal and external computer use
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Research on Computer Algebra

The earliest empirical study of the effects of the use of computer algebra

in the teaching and learning process would appear to be that by Heid

(1988), which was based upon her doctoral study completed in 1984. In

this quasi-experimental study, Heid compared two groups of college

students (n = 39) studying applied calculus, using traditional methods

with one group, while the other used graph plotting and symbol

manipulation software (muMATH) to perform routine manipulations.

While the control group spent the full twelve weeks of the course

practising the manipulative skills required in the course, the

experimental group spent only the last three weeks on skill

development. Prior to that, all computations were performed using the

computer, while the instructional focus was upon concept development

and understanding. Heid found that, while the two groups performed

equally well on tests of manipulative ability, the experimental group

demonstrated better understanding of the required concepts.

Similar results have been found in other studies comparing groups

using computer algebra with those following traditional approaches

(Boers, 1990, 1992, Palmiter, 1991). The study by Palmiter used a

relatively large group (n = 78) of university calculus students as the

sample, and demonstrated not only improved conceptual knowledge as

a result of the use of the program MACSYMA, but also better

computational scores using the computer algebra system than other

students using pencil and paper methods (Palmiter, 1991, pp. 153-

156).
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Boers (1990) investigated the acquisition of the concept of variable in a

traditional as opposed to a “computer-intensive” algebra curriculum, in

which the program Derive was used by a middle-school class of Algebra

1 students to perform all algebraic manipulations. Six students from

each group were interviewed twice during the academic year, and the

results indicated that the use of computer algebra encouraged in

students an understanding of variables as “generalisers” and as

“varying quantities that are dependent on other quantities” (Boers,

1992, p. 6), as opposed to the more static concept of variable as an

“unknown quantity” which appeared to result from the traditional

approach. The experimental group demonstrated also a greater ability

to model problem situations and to read and interpret tables of values

and graphs than their traditionally instructed peers (Boers, 1992, pp.

4-5). Similar improvements in conceptual understanding without

corresponding loss of manipulative facility were supported by other

studies involving secondary students using computer algebra systems

as scaffolding tools (Rosenberg, 1990, Wood, 1991).

The program Maple has been used with both Business Calculus and

Calculus 1 students in studies which support the earlier findings by

Heid and Palmiter that skill acquisition is not a necessary prerequisite

to conceptual understanding or the ability to apply calculus to problem

solving situations (Judson, 1990a, 1990b).

These tertiary studies of the use of computer algebra tools differ from

secondary school studies in that they involve students of mathematics

who, however diverse, must nonetheless be considered select groups of

better than average mathematical ability. The secondary studies cited
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were not concerned with the acquisition of algebraic skills but with the

relative understandings associated with particular central concepts.

Questions regarding the effects of the use of computer algebra upon

skill acquisition among those beginning their studies of algebra remain

as yet largely unaddressed by research.

Studies by Yerushalmy have investigated the effects upon junior

secondary students of the use of specifically designed tools which

combine algebraic manipulation capabilities with graph plotting in what

he terms “multiple representation software” (Yerushalmy, 1991a,

1991b). The first study explored the effects of computerised feedback on

the ways in which a group of 25 seventh-grade students carried out

algebraic transformations, and their approaches to “debugging” their

own processes. They were divided into four groups - one which received

no feedback regarding their work, another which was simply informed

as to whether their results were correct or incorrect; the other groups

had computer assistance to provide feedback - one in graphical form,

and the other using a symbol manipulator. Students who received

feedback on their work in graphical form were found to be motivated to

carry out further investigations upon their work - they were able to see

the graph of the desired end-product of an algebraic transformation,

and the graph of their own result, and were encouraged to act upon

their work in order to “correct” their errors. The “manipulator” group

was found to be motivated to arrive at the “correct” result using the

tools provided. The group given “judgemental” feedback (correct or

incorrect) performed better than that with no feedback at all on their

end results, but still lacked motivation and probably the ability to

correctly complete the tasks. The implications for teaching from this
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study suggest that computerised feedback in both symbolic and

graphical forms can serve as a strongly motivational factor with regard

to students performing algebraic transformations, and can encourage

them to persevere and continue to explore given tasks to a greater

extent than students without such feedback.

Yerushalmy found in another study that software which encouraged

students to explore “multiple representations” of functions (symbolic,

numerical and graphical) enhanced their understanding of the concept

of function and encouraged a more versatile approach to problem

solving. This study, with 35 eighth graders, also suggested, however,

that the cognitive “links” between the various representations were

fragile, and did not occur spontaneously (Yerushalmy, 1991b, pp. 54-

55). Student misinterpretations and informal theories were common, as

was the tendency to view functions as objects rather than processes.

There is a need to implement the use of such powerful computer tools

thoughtfully and with caution (Yerushalmy, 1991b):

During this course the students developed and continued to use theories which
reflected both their correct understandings and their misconceptions. As
Goldenberg (1987) claims, such theories might not be efficient, but they have
their own value. As it was shown, these theories do not impair student ability to
carry out correct techniques in an efficient way. (p. 55)

There exists, then, a growing body of evidence which suggests the

benefits of the use of computer algebra software as an aid to

mathematics learning and instruction in secondary schools. Used

carefully, such tools may be expected to contribute to improvements in

concept development and understanding, in addition to more positive

attitudes towards the subject. Students using such aids have been

found to be more effective and persistent problem solvers, and more
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inventive in their approaches. No evidence has been found to support

claims of reduced manipulative ability when such software is used to

support computation.

The use of computer algebra, however, is not without its critics. In

particular, Waits and Demana (1988) argue that little is to be gained

from “a device that simply symbolically produces the answer” (Waits

and Demana, 1988, p. 334). They argue the case strongly for the use of

graph plotters and particularly graphics calculators as essential aids to

mathematics instruction. In dismissing the use of computer algebra,

however, they suggest the following as reasons (after Waits and

Demana, 1992):

• Cost and accessibility preclude the majority of students from using such

technology, both at home and school;

• ... (E)xact answers produced by computer symbol manipulators are often of

no real use and sometimes furnish little insight into the problem modelled

by the algebraic representations.

• ...(S)tandardised tests change slowly and students will be required to

demonstrate some ability in algebraic manipulation on them for some time

to come...

• ... (N)o one can be sure at this time how much paper-and-pencil algebraic

manipulation is really necessary for success in college and in a work place

that requires increasing technological and scientific know-how. (p. 180)

While such arguments provide valuable cautionary guidelines from

which to view the use of computer algebra software in schools, they fail

to adequately argue against their introduction. Many of the same

criticisms regarding access and affordability have been levelled against

graphics calculators in the past, prior to their reductions in price in the

past two years. The same reductions and increased availability may be
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expected to apply to computer algebra tools, with “free” and “shareware”

programs such as MathMaster and CoCoA for the Macintosh, and CC3 -

the Calculus Calculator for MS-DOS machines already available. The

problem of student access to hardware, of course, remains critical.

The issue of personal access to classroom computer technology for the

students (discussed above) may be directly related to the development

of hand-held mathematical computers which offer graph plotting and,

in some cases, symbol manipulation (Ruthven, 1992, Dick, 1992).

“Portable” computer algebra systems such as the Hewlett Packard HP-

28 series have been available for some years, and present another

alternative to the problems of access and equity which have already

been mentioned. Although expensive in comparison with numerical

calculators and even graph plotters, the cost of a class set of such tools

(eight to ten units, allowing senior students to work in groups of two or

three) is comparable to that of a classroom computer. Research on the

use of such tools in senior classes suggests that they can contribute to

improvements in concept development and understanding, student

attitudes and confidence (Arnold 1990, 1992e). The symbolic man-

ipulation capabilities of these calculators are, at present, limited - they

tend to be slow and difficult for students to master, and so do not

provide a sufficiently transparent and intuitive tool for use across the

secondary years. The advantages of portability and personal access,

however, make their use in the senior years attractive.

The argument that exact answers to symbolic problems actually

obscure interpretation of the solution (Waits and Demana, 1992, p.

181) is an interesting one; however, most computer algebra tools allow
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answers to be expressed in both exact and rational approximation

forms, a choice not available on hand-held computers. Similarly,

criticising computer algebra systems because they sometimes produce

different forms for the same answer seems also to be somewhat short-

sighted, since this provides a powerful incentive and opportunity for

student exploration of mathematical identities, and certainly a valuable

basis for classroom discussion.

In summary, then, the literature provides adequate evidence of the

potential for computer algebra tools to enhance the teaching and

learning of mathematics at all levels from the junior years of secondary

school to the tertiary years. While the current state of the research in

this area remains far from conclusive, and there is evidence that there

are dangers and pitfalls in the use of such technology, there appears to

be much to recommend further research on the effects and implications

of such instructional practice. In the absence of extensive research

evidence with regard to this new and expanding educational field, the

value of further research is heightened. As increasing numbers of

educators begin to explore the classroom implications of advanced

mathematical software, their observations and opinions provide

valuable guidelines for others entering the same largely uncharted

waters.

The Contribution of Vygotsky

Both Piaget and Vygotsky began their studies in the early years of this

century. While Piaget’s life and work spanned most of this century,

Vygotsky died in 1934, at only 38 years of age. His work was largely
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unknown outside his own country until the 1960s; even within the

Soviet Union, it was suppressed for many years. Over the past three

decades, however, Vygotsky’s writings have assumed growing

importance, particularly in the development of wholistic theories of

language learning, but increasingly in fields such as mathematics

learning and teaching (Zepp, 1989, Manning and Payne, 1993, Confrey,

1993b). His notion of a Zone of Proximal Development has proved

appealing in a wide variety of contexts, and offers much in the present

exploration of the way in which appropriate computer tools may assist

the growth of understanding.

In seeking to understand something of the contribution of Vygotsky in

the present context, it is appropriate to begin with the notion of “tools”.

He began his work, Thought and Language (Vygotsky, 1962) with a

quotation (in Latin) from Sir Francis Bacon, translated by Bruner

(1986) as:

Neither hand nor mind alone , left to itself, would amount to much. And
what are these prosthetic devices that perfect them? (p. 72)

The additional tools to which Vygotsky appears to be referring are,

most importantly, thought and language, those means by which we are

recognised as most uniquely human. In opposition to Piaget, Vygotsky

places language as the precursor to thought, claiming that it is only

through the use of language that the higher mental processes may

develop and become operational. Language is social in origin, developed

through interaction with others, and, in Vygotsky’s view, serves two

primary purposes - self-direction and communication. This perception

of language as a tool which aids thought is a fundamental feature of
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Vygotsky’s view. He believed that the higher mental processes are

mediated by language, first observed as egocentric speech in children,

which then becomes internalised, developing into thought. (Zepp, 1989,

p. 30-32)

Mathematics shares with language these twin characteristics: it is, at

once, both cognitive tool and means of communication. This distinction

(drawn by Confrey, 1993b, p. 50) is significant in the context of the use

of computer technology in mathematics learning. In its role as tool,

mathematics may be perceived primarily as a means of effecting some

outcome; as Confrey points out, the image of mathematics as tool links

it with action, a significant aspect often overlooked. The potential for

computer technology to assume an active mediating role in supporting

mathematical thinking, learning and practise, is critically important in

the current study. The potential role of goal-directed action may be

exemplified by comparing the interface offered by the Macintosh

computer algebra package, Theorist, with that of other packages of the

same type. Most computer algebra tools allow the immediate solution of

equations, for example, through a general “Solve” command; in some

cases, the intermediate steps of the equation-solving process are

supported by allowing operations to be carried out on both sides of the

equation. Theorist is unique in allowing the user to physically

manipulate the terms and elements of algebraic expressions and

equations. Solving an equation such as
3

 x - 1 = 2

may be achieved by physically selecting the denominator, x - 1, and,

using the mouse, dragging it across to the right-hand side of the

equation, to automatically produce
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3 = 2 ( x - 1 )

This may be expanded, and the x term isolated by similar

manipulations. The program offers the choice of alternative techniques

which, in some ways, may be preferable pedagogically (involving

performing the same operation to both sides of the equation, producing

equivalent equations). At the same time, many students and teachers

solve equations in exactly this way, involving either overt or covert

physical manipulation of the terms. The role of action in higher

mathematical processes is likely to be significant, but as yet remains

largely unexplored. This recent development of computer software

which simulates and supports such physical involvement invites such

exploration.

In the context of the present study, the thinking of individuals as they

interact with advanced mathematical software is seen to be accessible

through the twin avenues of action and language. The software tool

designed for the study captures both aspects of the interactive process.

It records the actions of the users as they engage in a wide range of

mathematical tasks, both independently and within the context of the

instructional modules provided - each button that is pressed, each

option chosen, the time spent at each point of the process; these

important elements of physical involvement become part of the record

of interaction which the software provides. Written comments in

response to questions, prompts and probes generated by the software

throughout the session also become part of this record, allowing the

language of the user to be coupled with the concurrent interactions.

Central to Vygotsky’s view of cognition and learning is the social and
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cultural context of the learner. In particular, the learner is viewed as

achieving higher cognitive ground through interaction with others,

especially adults and knowledgeable peers. His zone of proximal

development may be thought of as “the distance between the actual

developmental level as determined through independent problem

solving and the level of potential development as determined through

problem solving under adult guidance or in collaboration with more

capable peers” (Vygotsky, 1978, p. 86). Bruner explores the

implications of this concept for tutoring and guided learning through

his notion of “scaffolding” (Bruner, 1986, pp. 74-76). Since the use of

the software by students in the present study occurs most often within

such a context, these ideas are particularly significant.

Wood (1980, 1986) expands upon both Vygotsky’s zone of proximal

development and Bruner’s notion of scaffolding to offer a model of

learning based upon twin central principles of uncertainty and

contingency. Wood observes that learning within a situation of

uncertainty is always less effective than one in which the learner is

able to recognise commonalities and familiar features. Motivation, task

orientation, even the ability to remember particular features of the

situation - all are likely to be reduced in unfamiliar situations, and

much mathematics learning occurs within situations high in

uncertainty. Support is required, then, in such situations of high

uncertainty which will serve to alleviate these problems and so make

the learning experience more effective.

Wood’s second key principle defines the preferred nature of such

support, requiring that the response of the tutor be contingent upon
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that of the child if optimal cognitive progression is to occur. Wood

postulates five levels of increasing control which may be observed in a

tutorial situation (that is, a learning situation involving interaction

between the learner and a more capable other - the “tutor”) (Wood,

1986, pp. 197-198). These range from minimal control - the tutor

prompts the learner with a general question, such as “What might be

done here?” - to highly controlled, in which the tutor actually

demonstrates the steps needed to fulfil the requirements of the task.

Wood’s principle of contingency requires the tutor to decrease the level

of control at each correct action of the learner, and to increase the level

of control or intervention upon each error. This process of flexible

scaffolding allows the learner to progress optimally across the zone of

proximal development, with greater and lesser degrees of support as

required. The critical principle in such learning is the promotion of

autonomy and independence on the part of the learner. It is not

difficult to support and scaffold learning; the challenge lies in doing

this in such a way that the scaffolding is gradually removed, and the

learner actually decreases the level of dependence upon the support

structure as the learning sequence progresses. This is the primary goal

of contingent learning. In the context of mother-child instructional

situations, Wood cites research which supports such learning: “What

we find is that the more frequently contingent a teacher is the more the

child can do alone after instruction" (Wood, 1986, p. 198).

A common assumption has been that the necessary support must be

given by others; the potential role of the computer in such a

relationship remains open. In particular, the use of software which

supports the manipulations and representations of high school algebra
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appears to coincide with this notion of scaffolding. Certainly, if used to

complement an adult-child tutoring relationship all requirements are

fulfilled. At the same time, two other scenarios may be considered: the

first involves two peers, both beginning their study of some aspect of

algebra, with access to computer algebra software. Although neither

may serve the role of “expert”, their social interaction and verbalisation

while working together using the computer as support (effectively

assuming the “expert” role) appears to offer much in common with the

Vygotskian notion. Certainly, the situation offers the opportunity for

the verbal and social interaction so necessary for the achievement of

cognitive progression, while the software offers the means of navigating

across the zone of proximal development, allowing work in advance of

the current state of both students.

Another scenario, too, may be considered. In this situation, the role of

“expert” is again taken by the computer, but this time in the form of

interactive instructional material prepared in advance. The individual

student may work through such materials supported by access to

suitable advanced mathematical software which will aid and encourage

enquiry and exploration. The student enters responses and comments,

and answers questions as they occur in the work, forcing verbalisation

of the developing ideas. This model, too, shares much in common with

Vygotsky’s model of learning, in which the learner is challenged to

move beyond the present level, and is supported in this movement by

access to appropriate software. The Exploring Algebra package (Arnold,

1993) has been developed using HyperCard on the Macintosh computer

to provide just such a learning model, especially when used in

conjunction with an appropriate support program, such as Theorist
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Student Edition.

The structure of the learning environment is the focus for research by

Valsiner (in Rogoff and Wertsch, 1984) which extends the study of the

zone of proximal development. Exemplified by the adult-child learning

experiences associated with the socialization of meals, Valsiner

proposes two additional zones which serve to define more clearly some

of the situational constraints which may act to support or impede

progress across the zone of proximal development. The first of these

constructs, called the zone of free movement (or ZFM) is based upon the

observation that learning is facilitated by focussing the attention of the

learner upon that which is to be achieved. This may be done by

restricting the actions of the learner, or by defining a “zone of free

movement” (Valsiner, 1984).

Within the field of objects and affordances related to them in the
environment of the child, the zone of free movement (ZFM) is defined for
the child’s activities. The ZFM structures the child’s access to different
areas of the environment, to different objects within these areas, and to
different ways of acting upon these objects. (pp. 67-68)

In the present study, this zone is defined by the boundaries of the

software, with the HyperCard modules serving as the base from which

other tools may be readily accessed, and then returning once again to

continue with the task at hand. The parameters of the ZFM, then, are

clearly defined within the context of the computer tools available.

Defined conjointly with the zone of free movement is a zone of promoted

action (ZPA). If the ZFM is effectively an “inhibitory mechanism”

(Valsiner, 1984, p. 68) which functions to limit the actions of the

learner within the structured environment, then within that zone exist

Page  56



Learning to Use New Tools Review of the Literature

“sub-zones” which are defined by those actions sought to be

encouraged and learned. In the context of “meal time”, these may

involve the appropriate use of cutlery; in relation to the present study,

the zone of promoted action will be defined by the appropriate use of

available software tools to achieve mathematical goals. In particular,

the ready accessibility of computer algebra, graph plotting and table of

values utilities encourage their use by the learners; the extent and form

of such use becomes the primary focus of this study.

Theory based upon the work of Vygotsky, then, offers much which may

inform and direct a study of the use of advanced mathematical

software. Such theories provide significant guidance in the search for

ways in which such software may be used, and such use studied.

There is a need, however, for more descriptive detail if the interactions

of students and teachers with the technology are to be made explicit. In

particular, Vygotsky recognises the existence of qualitatively different

levels of development and styles of thought, but does not pursue or

expand on these. If the algebraic thinking and understanding, and the

thinking about teaching and learning, of both students and teachers

are to be observed and monitored, then such detail is a necessity. In

the domain of mathematical thinking, the theory of Pierre van Hiele

and Dina van Hiele-Geldof offers a suitable framework.

A Theory of Mathematics Education

Although van Hiele’s theory (van Hiele, 1986) has been most widely

recognised for its role in explicating the levels of thinking associated

with the learning of geometry, it has been developed as a general theory
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of mathematics education. Growing from the concerns of teachers, it

does not stop at the description of “levels of thinking”, but seeks to

provide a basis for understanding the movement between these levels,

and the role of the teacher in assisting such progression. As such, the

theory goes beyond the SOLO taxonomy (which is essentially

descriptive) and beyond, too, the concerns of Piaget, who deliberately

distanced himself from the question of how students may be

encouraged to progress from level to level. His was a developmental

theory, holding that such progression was largely independent of the

influence of instruction; he referred to such concerns disparagingly as

“the American question”, but in fact it was the Dutch van Hieles who

appear to have made significant progress in addressing it.

In his recent work (1986), Pierre van Hiele describes a theory of

mathematics education arising from the study of two fundamental

concepts - structure and insight. Although reluctant to specify a

definition for the first, van Hiele admits that it may be broadly thought

of as a “network of relations” (van Hiele, 1986, p. 49) in which

commonalities are recognised across all types of events and

perceptions. In everyday life, we recognise structure in going through

daily routines, at work and home; structures are apparent in the

patterns of nature and man; continuing a sequence of numbers is a

recognition of structure, as is the recognition that the symbol ( x + 2 )2

may be seen as a sign to expand the given expression and produce a

new equivalent one. Insight, in this context, is a recognition of structure

- we know what to do when we experience such insight, and it is

precisely an absence of such insight which leaves so many school

students at a loss as to know what to do with a given algebraic
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expression, equation or problem.

Van Hiele distinguishes between rigid and feeble structures (van Hiele,

1986, pp. 19-23), strongly reminiscent of Wood’s principle of

uncertainty (Wood, 1986). Consider, for example, a student presented

with the expression, x2 - ( x + h )2. The more likely response for a

student of at least moderate algebraic facility is to attempt to expand

and simplify the expression. The recognition of the requirement to

expand the squared part of the expression may be thought of as a

relatively rigid structure. The recognition that such an expression

provides an opportunity for factorisation, as a “difference of two

squares”, however, is likely in most students, to be a relatively feeble

structure. Some prompting may be required for students to recognise

this structure, even when they quickly recognise it in a case such as x2

- 4. The dominant strategy of algebra instruction in the past has

centred around the development of rigid structures through repetition,

seeking to “automate” student responses to algebraic prompts. Such

learning, however, is likely to occur at a very superficial level, and is

relatively easily exposed when students encounter an exceptional case.

As explained by Confrey, this relates closely to the Vygotskian notion of

“pseudoconcept” (Confrey, 1993b),

... acknowledging that children often use words before they have grounded
its [sic] meaning in conceptual operations. Vygotsky suggests that this use
of language that runs ahead of cognitive depth is an important part of
learning - and describes a key mechanism in how adults teach children to
advance to higher levels of cognitive thought. (p. 50)

This recognition of the central role of language in the learning process

is a common theme throughout the works of both Vygotsky and van

Hiele.
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To van Hiele, true learning is that which students achieve through their

own efforts, efforts which involve them in experiencing what he terms a

“crisis of thinking” (van Hiele, 1986, p. 43). Similar to the Piagetian

notion of disequilibrium, and very close to Doll’s “perturbation” (Doll,

1986, p. 15), van Hiele sees such a crisis as necessary for students to

achieve a higher level of thinking. While teachers may be successful in

having students “mimic” the responses of a higher level, unless the

learner has struggled with the material personally, no cognitive gain

has been made. The cognitive “safety nets” (described by Tobin and

Fraser, 1988) which are a feature of many mathematics classrooms are

attempts by students (and by their teachers) to reduce the cognitive

load of the material to be learnt; such efforts in van Hiele’s view, must

be carefully controlled, since meaningful learning involves transition to

a higher level of thinking, and this can only occur by going beyond the

present state. The links with Vygotsky’s zone of proximal development

are apparent, where “the only good learning is that which is in advance

of development” (Vygotsky, 1987, p. 89).

This is the point at which the theories of learning described here

coincide. For all their various forms and distinct priorities, the common

ground is the perceived need for challenge. The teacher does not

encourage learning by predigesting the material; rather, the learner

must be an active participant in the process of creating meaning

through interacting with that which is to be learnt in a context which

supports exploration, verbalisation and activity.

The ways in which the levels of thinking proposed in the van Hiele
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theory (van Hiele, 1986, p. 53) complement those of the SOLO

taxonomy have been described in detail elsewhere (Pegg, 1992a). The

van Hiele levels begin, not with the level of action proposed as the

sensori-motor mode of the SOLO taxonomy, but with the level of

visualisation or recognition (Hoffer, 1981), corresponding to the global,

intuitive thinking associated with ikonic thought. Next is the level of

analysis, or the descriptive level (van Hiele, 1986, p. 53), corresponding

closely to the concrete-symbolic mode of the SOLO taxonomy. This is

followed by a level alternatively labelled abstraction (Burger and

Shaughnessy, 1986), ordering (Hoffer, 1981, p. 14) or, simply, the

theoretical level (van Hiele, 1986), easily recognised as encompassing

formal modes of thought. Although the literature describes successive

levels (commonly as deduction and rigour) van Hiele himself appears

more inclined to view these as logical extensions of the theoretical level

(van Hiele, 1986, p. 53) which, once achieved, experience a

phenomenon he describes as level reduction (van Hiele, 1986, p. 53).

Although the objects of thought may involve successively higher levels

of abstraction, the actual mode or style of thinking remains essentially

the same. The correspondences which occur with the SOLO taxonomy

enable the two models to be considered as logically compatible; the

different ways in which each illuminates each style of thought,

however, makes the synthesis proposed here attractive.

The theory of van Hiele, in addition to describing levels of thinking,

offers an important addition. This is the notion of stages of learning as

means by which the learner may be assisted to seek higher cognitive

ground. Five such stages are specified (van Hiele, 1986):
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1. In the first stage, that of information, pupils get acquainted

with the working domain.

2. In the second stage, that of guided orientation, they are guided

by tasks (given by the teacher, or made by themselves) with

different relations of the network to be formed.

3. In the third stage, that of explicitation, they become conscious

of the relations, they try to express them in words, they learn

the technical language of the subject matter.

4. In the fourth stage, that of free orientation, they learn by

general tasks to find their own way in the network of

relations.

5. In the fifth stage, that of integration, they build an overview of

all they have learned of the subject, of the newly formed

network of relations now at their disposal. (pp. 53-54)

These stages of learning are significant in providing a framework for

instruction aimed to develop understanding of the material or skills to

be learnt. Each of the five stages relates to an aspect of the HyperCard

program, Exploring Algebra (Arnold, 1993) developed for this study of

the ways in which teachers and students interact with advanced

mathematical tools. The program was designed to provide information

about the topic to be studied, using the point and click interface of the

Macintosh and the branching features offered by HyperCard (Stage 1).

Problems are posed within the materials (Stage 2), and computer tools
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made easily accessible by which such problems might be investigated

(Stage 4). Although a “comment” option is provided, it remains for the

teacher or tutor to pursue the verbalisation required for stage 3, and to

draw together the materials for the last stage of integration. Probes and

prompts (described below) seek to elicit responses concerning

understanding of the material and thinking about the critical concepts

of algebra (such as equations, functions and expressions), but the

student should ideally share their thinking with another at some stage

in the process. This illustrates a further consistency with the

Vygotskian notion of the zone of proximal development.
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The SOLO Taxonomy

Both pedagogical and mathematical thinking may be viewed as

consisting of a range of elements, operating on different levels. The

SOLO taxonomy provides valuable insights into the nature of such

elements. Building upon the developmental learning theories of Piaget

and Bruner, Biggs and Collis recognised that learners demonstrate

distinct modes of functioning, generally corresponding to the following

age periods:

From Birth ..................... Sensori-Motor

From around 18 months. Ikonic

From around 6 years ...... Concrete-symbolic (approx. K-Year 10)

From around 16 years.... Formal (approx. Years 11 and 12 +)

From around 20 years.... Post-Formal (University/professional practice)

Differing from classical stage theory, it is not suggested that each stage

replaces the previous one, but that each adds to the available cognitive

repertoire. In different situations, learners may “regress” to an earlier

acquired mode of functioning or utilise a higher cognitive function in

the learning of a lower-order one, adopting a “multi-modal” approach to

the task at hand (Biggs and Collis, 1991, Collis and Biggs, 1991). An

example of the first situation (labelled “top-down” learning by the

authors) would be the use of intuitive, visual methods in mathematical

problem solving, where the ikonic mode is used to supplement the more

usual concrete-symbolic approach. “Bottom-Up” learning may be

illustrated by the use of higher-order practices in the learning of

sensori-motor skills (such as thinking through the action of a golf

swing, studying the style of expert players or learning the theory and
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techniques of art in order to improve in the ikonic aspects). Although

much of secondary schooling may be recognised as occurring within

the concrete-symbolic mode, the use of multi-modal strategies may be

more extensive than previously realised (Biggs and Collis, 1991, Collis

and Biggs, 1991). It is certainly common in areas such as music, which

utilises sensori-motor, ikonic and concrete-symbolic elements in the

learning process, and recent research suggests that the ikonic mode

may be a powerful influence in mathematical problem solving (Collis,

Watson and Campbell, 1992). At present, however, much of the focus

of instruction in secondary schools lies within the concrete-symbolic

domain. Even at the senior level, it is now believed that the end-point

of instruction in most subjects will be at this level. Only in those areas

in which the student is particularly competent (and likely to continue

into tertiary study) is formal mode functioning likely to be observed

with any degree of frequency (Collis and Biggs, 1992).

Some learners never reach the formal stage, at which the foci of

interaction are theories and abstractions, rather than the more

concrete objects of earlier stages; many, perhaps most, do not achieve

post-formal, which involves working with and extending theory systems

themselves. With increased retention rates in the senior years of

schooling, it is likely that increasing numbers of senior students will be

operating throughout their studies at the concrete-symbolic level (Collis

and Biggs, 1983). The preferred mode of operation for students has

significant implications for learning and instruction (Collis and Biggs,

1991), and will become a focus for this investigation in the study of the

representation and understanding by students and preservice teachers

of algebra and learning interactions.
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Further, Biggs and Collis suggest that, within each mode of

functioning, learners display a consistent sequence or “learning cycle”

when learning new tasks. This gives rise to the SOLO acronym,

detailing the “Structure of the Observed Learning Outcomes”. The

theory postulates five distinct levels or outcome structures (from Biggs

and Collis, 1989):

Prestructural The task is engaged, but the learner is

distracted or misled by an irrelevant aspect

belonging to a previous stage or mode.

Unistructural The learner focuses on the relevant

domain, and picks one aspect to work with.

Multistructural The learner picks up more and more

relevant or correct features, but does not

integrate them.

Relational The learner now integrates the parts with

each other, so that the whole has a

coherent structure and meaning.

Extended Abstract The learner now generalises the structure

to take in new and more abstract features,

representing a higher mode of operation. (p.

152)

Using this framework it becomes possible to identify an individual’s

current level of operation for a particular task through a study of

verbal and/or written responses. It thus provides a powerful tool for
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the assessment of student understanding of concepts, and for problem

solving (Collis and Romberg, 1991). The taxonomy has also proved

effective as a means of planning and developing curricula based on the

cognitive characteristics of the learners (Stanbridge, 1990).

In terms of pedagogy, the unistructural, multistructural and relational

levels are recognised as the “target modes” for teaching; allowing for

individual differences, it may be expected that all students should

achieve one of these levels as a result of an effective learning

experience. In the case of new work, it should be the teacher’s objective

to assist the students to move from a prestructural state (with no

organised or coherent knowledge of the material) to one that is, ideally,

relational. In practice, however, the more likely end result for

instruction is multistructural, in which students and their teachers are

satisfied to know “some things about an area”. Relational

understanding (in both the SOLO sense and that of Skemp, 1976) is

frequently sacrificed for the demands of utility. The occurrence of an

extended abstract response is not normally one that is anticipated as a

direct result of instruction, but is more a function of the individual

learner’s ability to go beyond what has been taught.

Recent research suggests that, just as the linear sequence of modal

development originally proposed has given way to a more complex

multi-modal structure, so the cycle of levels within the modes may be

more complex than originally anticipated. In particular, at least two

Unistructural-Multistructural-Relational cycles now appear to exist

within the concrete-symbolic mode, as observed across a range of

mathematical topics in the junior years of high school (Pegg, 1992b).
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This would help to explain quite distinct styles of thinking about

complex mathematical objects (such as process and object conceptions

of functions) while situated within a single cognitive domain. As more

is revealed through research, the model of cognitive development

offered by the SOLO Taxonomy assumes less of the linear, sequential

pattern of its Piagetian origins, and more of a complex branching

structure.

Figure 2.2 (Pegg, 1992a, p. 27) provides a schematic outline which

relates modes, learning cycle, curriculum goals and suggested exit

levels for schooling. Each mode of operation is associated with a

particular “type of knowledge”, as illustrated. That arising from the

sensori-motor is likely to be tacit, unable to be articulated, as in the

“feel” of a good golf swing. The ikonic mode produces knowledge which

is intuitive, difficult to verbalise, and closely linked to visual and

emotive aspects of the situation. The concrete-symbolic mode leads to

knowledge that is declarative - not only knowing “how to”, as in earlier

modes, but being able to say “why”, at least in terms of the concrete

referents available. The theoretical knowledge which results from the

later modes involves adopting theories and theory systems - complex

networks of relations between ideas and concepts - as the objects of

thinking.
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Figure 2.2: SOLO Taxonomy: Schematic Outline

Images and Definitions of Algebra

The concept of “function” is increasingly recognised as central to an

understanding of algebra across the years of secondary schooling and

beyond, particularly within a technology-rich context (Harel and

Dubinsky 1992, Grouws, 1992, Romberg, Fennema and Carpenter,

1993). Senior students are expected to be familiar with a range of

common functions, including the linear, quadratic, trigonometric,

exponential and logarithmic functions; to sketch, manipulate,

differentiate and integrate them. The study of functions occupies the

major part of the time spent on mathematics in the senior school.

The concept of “function”, not surprisingly, is one which is

mathematically rich, capable of being thought of using a number of

distinct representations, or “images”. Numerous studies over the past
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decade have investigated the ways in which different groups of people

think about and use functions. Barnes (1988, p. 121), in interviews

with secondary and tertiary students in New South Wales, identified six

frequently occurring images of functions:

• A graph or curve

• A set of ordered pairs or table of values

• A relationship between two variables

• An algebraic formula or equation

• A “function machine” (input-output device)

• The symbol f(x)

She also distinguished the image of function as a “mapping between

two sets”, which was not widely used by students, but was seen as

useful in thinking about the concept.

Barnes interviewed what she described as a “small group of Year 11

students, who had recently begun calculus” (Barnes, 1988, p. 119). She

found that the dominant image of function used by these students was

a graphical one and that there was widespread uncertainty about “what

a function is” (Barnes, 1988, p. 122) - presumably the more formal

definition of the concept. A more recent and extensive study, which was

undertaken to provide baseline data for the current project, found a

different pattern of representation (Arnold, 1992d). This study, of close

to 400 high ability secondary and tertiary mathematics students found

that these students were most likely to think of functions as algebraic

formulae or equations, and slightly less likely to use a graphical image,

or to think of them as rules or relationships between variables.

Studies by Vinner and his colleagues over the past ten years (Vinner,
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1983, Tall and Vinner, 1989, Vinner and Dreyfuss, 1989) distinguish

between a “concept image” (“the set of all the mental pictures associated

. . with the concept name, together with all the properties characterising

them” (Vinner and Dreyfuss, 1989, p. 356)) and a “concept definition”

(“a verbal definition that accurately explains the concept in a non-

circular way” (Vinner, 1983, p. 293)). Such studies reveal, among other

things, that concept images may not always be consistent with the

formal definition, but that such inconsistencies are often not apparent.

Much of the focus in this area has been upon identifying individual

images which students prefer to use when thinking about functions,

although the verbal descriptions given as definitions of functions

frequently comprise multiple images. This was further supported in

Arnold (1992d), in which the pattern of representation was quite

different when students were asked to describe a function “in their own

words”. In this situation, functions were most likely to be described as a

“rule or relationship”, which coincides with the common (non-

mathematical) idea of “function”, or one of several “multiple-image”

definitions, such as an “algebraic object which can be graphed”, or a

“rule which can be expressed algebraically or graphically” (Arnold,

1992d).

The SOLO taxonomy distinguishes levels of understanding in the

acquisition of concepts which are relevant in this context. Students who

focus quickly upon a single property or characteristic of a concept are

said to be unistructural; those who recognise several properties as

relevant, but do not link these together may be thought of as

multistructural; those who are able to see the relationships between the

various properties or representations of a concept are said to be
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relational. Some may go beyond this level, forming new connections and

seeing applications of the concept in new situations; such learners are

said to be operating at an extended abstract level. These levels (together

with an initial pre-structural level) are considered to cycle through each

of the developmental modes - sensori-motor, ikonic, concrete-symbolic,

formal and post-formal operations. Learners who describe functions

using multiple images would be considered to be operating at a higher

cognitive level than those who use only a single image. Whether they

see the relationships between these images (relational) or merely

perceive them independently (multistructural) would be difficult to

determine without individual interviews. Nonetheless, we might expect

that those who describe functions using multiple representations might

be more successful than those who think of them unistructurally in

solving problems which require analysis of function properties. More

recent developments in SOLO theory (Biggs and Collis, 1991, Collis and

Biggs, 1991) suggest that individuals who operate in a multimodal way

(able to draw upon earlier modes of thinking) will be more effective as

problem solvers and critical thinkers. Students able to draw upon

versatile images of function (including the idea of “function as process”

and global “ikonic” images) to supplement their more usual concrete-

symbolic way of thinking were found to be more capable at analysing

functions and solving problems than those who tended to approach

such situations unimodally (Arnold, 1992d).

The mental representations of functions have been described in a

variety of ways. Eisenberg and Dreyfuss (1989) distinguish between

visual and symbolic representations, similar to that which Vinner (1989)

describes as visual and algebraic modes of thinking about functions.

Page  72



Learning to Use New Tools Review of the Literature

Konvisser (1989) describes three representations - numerical, symbolic

and graphical, while Tall and Thomas argue for versatile learners (1989)

- citing the work of Brumby (1982), they describe people as

global/holistic, exemplified by thinking of functions as curves,

serialist/analytic, as in the “function machine” image or, more

commonly, “versatile” - a mixture of the two.

A dual view of mathematical concepts such as function is further

explored by Sfard (1991, 1992, 1994), who describes such concepts as

having structural and operational dimensions, which should be seen as

complementary, not incompatible. Viewing functions as objects

(whether algebraic or graphical) is consistent with a structural

conception, while the idea of function as process is an operational view.

Sfard argues that the two perspectives interact and support each other,

and that the operational mode precedes the structural mode in concept

formation. In learning a concept such as function, students begin with

an active conception (substituting numerical values into expressions)

and gradually come to view such expressions as objects in their own

right. Such objects may then be manipulated and analysed for their

own sake, eventually becoming the basis for new processes in the

formation of other higher order concepts (as in the composition of

functions). This process is consistent with that described by Bruner (in

Bruner and Anglin, 1973), who sees cognitive growth as moving through

stages of representation which he described as enactive, iconic and

symbolic.

The evolution of the function concept throughout secondary schooling

follows this pattern. Although students begin with the enactive ideas of
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“function machine” or numerical substitution in junior secondary, they

move quickly to the study of functions as objects, which appears to

remain the focus for all future study. The valuable perception of

function as process may well be lost for many students by the time they

reach their senior years. Whether they are fixed at the analytic

concrete-symbolic mode or the global ikonic mode, early research

indicates that students unable to utilise both ways of thinking may well

be disadvantaged in thinking about and using functions effectively

(Arnold, 1992d). More recent work by Sfard (1992) suggests that the

majority of secondary school students hold a concept of function which

she terms pseudostructural, a superficial and inflexible understanding

which results from teaching the concept as an object (that is, teaching

structurally ) before the students have established its nature and reality

through exploration of the operational dimension (Sfard, 1992, pp. 75-

77).

As the use of computer technology has begun to impact more and more

upon senior mathematics classrooms in the form of graph plotting

software, multiple representation software (such as ANUgraph and CC3 -

the Calculus Calculator ) and computer algebra tools (such as Maple V)

which allow both the representation and manipulation of functions in a

variety of forms, the effects of such technology upon the ways in which

students visualise and use mathematical functions become critically

important. The use of such technology to improve student

understanding of the concepts of function and variable, and to

strengthen the links between the various representations available for

such concepts is likely to become a significant factor in the effective use

of computer tools in mathematics learning, and provides a central focus
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for the present study.

Effective Teaching in the Computer Age

In order to provide initial direction regarding the implementation of the

new modes of instruction which will accompany the use of computer

algebra tools in mathematics classrooms, it is relevant to consider

previous research on effective teaching in a more general sense. In

particular, does the extensive research on teaching reveal particular

instructional behaviours, teaching strategies or modes of thinking and

representation which are likely to aid in the successful implementation

of the current technological innovation? Studies on the classroom use

of computers in a variety of contexts indicate considerable promise as

demonstration tools (Ganguli, 1992), especially with regard to improved

concept development, and for encouraging a more individualised

instructional mode (Hativa et al, 1990). Work with pre-schoolers

suggests that young children interact naturally and effectively with

computers without the level of adult intervention previously considered

necessary (Hall and Elliott, 1992). However, there is also evidence that

teachers are unlikely to alter their instructional patterns to any real

extent in order to incorporate classroom computer technology - even to

the extent that they are unlikely to rearrange pre-existing spatial

arrangements or alter the sequence or mode of instruction (Mehan,

1989). There was evidence, however, that students were more adaptable

in such circumstances, and showed increased levels of mutual

assistance and co-operation. The problems of incorporating computer

technology into effective instruction, then, may well lie far more with

teachers than with the students involved.
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What constitutes “effective” or even “good” teaching, of course, remains

problematic, particularly in a time of “paradigm shift” (Prawat, 1992, p.

354) from previous assumptions about teaching and learning to the

constructivist stance increasingly espoused by researchers, if not by

practitioners (Prawat, 1992, Richardson, 1990). As new priorities for

instructional outcomes are recognised, practice previously recognised

as “effective” may suddenly become inadequate. A study by Schoenfeld

of a teacher in a 10th-grade geometry class demonstrated exactly this

effect (Schoenfeld, 1988):

Two pictures of the instruction and its results emerged from the study. On the
one hand, almost everything that took place in the classroom went as intended -
both in terms of the curriculum and in terms of the quality of the instruction.
The class was well managed and well taught, and the students did well on
standard performance measures. Seen from this perspective, the class was quite
successful. Yet from another perspective, the class was an important and
illustrative failure. There were significant ways in which . . having taken the
course may have done the students as much harm as good. (p. 145)

Attempts to classify teaching behaviours as “exemplary”, “expert” or

even “effective” must be viewed as a consequence of the assumptions

about teaching and learning which one holds. In particular, the method

of assessment which is used will have considerable influence upon the

conclusions drawn about a particular situation. If the outcome of

teaching practice is measured only in terms of student achievement on

traditional examinations, then certain strategies may be considered

well-defined in contributing to such results. Correlating teaching

practices with class achievement in introductory algebra, LeClerc,

Bertrand and Dufour concluded in agreement with Good Biddle and

Brophy (1983 in LeClerc, Bertrand and Dufour, 1986),

that pupils learn more efficiently when their teachers first structure new
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information for them and help them to relate it to what they already know, and
then monitor the performance and provide corrective feedback during
recitation, drill, practice, or application activities that provide pupils with
opportunities to develop mastery and use what they have learned. (p. 365)

If such advice is offered as a “recipe” for “effective teaching” then, no

matter how useful it may prove within certain contexts, it appears

doomed to failure. The research on teaching of the past decade has

revealed the complexities of the teacher’s task - that teaching is a

“complex cognitive skill” (Leinhardt, 1989, p. 53) which has tended to

defy experimental and correlational efforts to define and categorise it

(Bertrand and LeClerc, 1985). Scriven’s distinction between the “quest

for knowledge” and the “improvement of practice” models for research

(Scriven, 1983, p. 8) appears appropriate in this context. The moves in

teacher research over the past decade towards the study of

“expert/novice distinctions” (Berliner, 1986, Magliaro and Borko, 1986,

Carter, Sabers, Cushing, Pinnegar and Berliner, 1987, Leinhardt,

Weidman and Hammond, 1987, Strahan, 1989, Leinhardt, 1989 and

Livingston and Borko, 1990), “exemplary practice” (Tobin and Fraser,

1988) and naturalistic studies of elements of the teaching process

(Weade and Evertson, 1988, Mehan, 1989, Hansen, 1989) all recognise

the critical value of the “wisdom of practice” (Tobin and Fraser, 1988,

Leinhardt, 1992) in understanding the task of teaching.

From studies of “knowledge growth in teaching”, Shulman describes

teacher knowledge as consisting of distinct domains, distinguishing

between areas such as “content knowledge”, “pedagogical content

knowledge” and “curricular knowledge” (Shulman, 1986, pp. 9-10). He

describes the first as the “missing paradigm” which, at that time, had

been relatively unexplored by research, the previous emphasis having
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been upon “how teachers manage their classrooms, organise activities,

allocate time and turns, structure assignments, ascribe praise and

blame, formulate the levels for their questions, plan lessons, and judge

general student understanding” (Shulman, 1986, p. 8). His

recommendation for greater research emphasis upon subject-matter

knowledge has borne fruit, particularly in mathematics education,

where several studies have focused upon teachers’ knowledge and

understanding of central mathematical concepts such as functions and

graphing, which are relevant in the present context (Stein, Baxter and

Leinhardt, 1990, Even, 1990). Such studies indicate, among other

things, that poorly organised or represented knowledge leads to a

narrowing of instruction in terms of providing a poor foundation for

future work, an overemphasis upon non-essential aspects of the

concept, and failure to capitalise upon instructional opportunities for

fostering connections between concepts and representations (Stein,

Baxter and Leinhardt, 1990, p. 639).

In general, research intended to make explicit the nature of “effective”

teaching has tended to fall into two main areas of focus. The first

concerns itself with the study of teaching behaviours, observing and

documenting classroom practices which are associated with successful

instruction, usually as judged by colleagues, supervisors or students,

and measured against criteria which usually include success upon

achievement-based assessment. The “exemplary teaching studies” of

Tobin and associates at Curtin University in Western Australia over the

past five years have tended to fall largely into this category (Tobin,

1987, Tobin and Gallagher, 1987, Tobin and Fraser, 1988, Tobin, Kahle

and Fraser, 1990). Such studies focused early upon such specific
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factors as “wait time” between question and answer (Tobin, 1987), the

role of “target students” who tend to monopolise teacher attention and

reduce the cognitive demands made upon other students (Tobin and

Gallagher, 1987), in addition to attempts to categorise the more general

factors which influence and shape classroom practice and curriculum

implementation (Tobin and Fraser, 1988). Such features as classroom

management, the assessment system, the use of textbooks, in addition

to time demands placed upon teachers to “cover the work” at the

expense of student understanding or success - all were found to act

significantly to reduce the cognitive demands of the classroom activities,

and the effectiveness of instruction.

Later studies focused more directly upon identifying the practices of

teachers recognised by supervisors and colleagues as “effective”.

The exemplary teachers had well-managed classes and were able to concentrate
on establishing a productive learning environment. Each teacher viewed
teaching in terms of facilitating student learning . . Each teacher had a stated
belief that students created their own knowledge as a result of active
engagement in learning tasks . . . In all cases, the exemplary teachers had a
thorough and comprehensive knowledge of the content they were to teach.
Furthermore they had a range of teaching strategies that could be used without
a great deal of conscious thought . . . teacher expectations for student
performance were high, consistent and firm . . . These teachers thought and
talked about teaching approaches and were receptive to ideas for change. (Tobin
and Fraser, 1988, pp. 91-92)

Clearly many of the conclusions reached in this study represent a shift

away from the observation of practice and point towards the other

broad field of research into effective teaching - that of teacher thinking

(Mitchell and Marland, 1989). Studies such as the naturalistic

investigation conducted by Magliaro and Borko (1986) demonstrated

that effective instruction could not be defined simply in terms of

teaching behaviours and strategies, but needed to take into account the
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cognitive processes which accompanied instruction. This study

attempted to define relationships between classroom variables (such as

participation, task structures, and time engaged on reading tasks) and

student achievement in reading, contrasting two student teachers with

their supervisors. The results were largely inconclusive for these factors

- differences in student outcome could not be explained by the variables

in question, but related more to beliefs about teaching and conceptions

of their role by the participants (Magliaro and Borko, 1986; 133-135).

The recognition of teaching as a “complex cognitive skill” led naturally

to studies founded upon the expert/novice distinction as the basis for

studying and defining the thinking which is associated with successful

teaching practice. Drawing upon studies of the thinking of experts in

other complex cognitive fields (such as chess playing, note taking and

solving physics problems), expert/novice studies of teaching

investigated such factors as “mental scaffolding” used by teachers

during instruction (Peterson and Comeaux, 1987), the introduction and

integration of classroom routines (Leinhardt, Weidman and Hammond,

1987), processing and using information about students (Carter,

Sabers, Cushing, Pinnegar and Berliner, 1987), agendas, lesson

structures and explanations in mathematics lessons (Leinhardt, 1989),

views of instruction (Strahan, 1989) and the planning and

implementation of review lessons in high school mathematics

(Livingston and Borko, 1990).

For all their diversity of focus, these studies are surprisingly consistent

in their findings. Experts and novices differ in their recall,

representation and analysis of classroom situations (Leinhardt, 1989):
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Expertise is characterised by speed of action, forward-directed solutions,
accuracy, enriched representations, and elaborations of knowledge rich in depth
and organisational quality, [and by] lessons that are open, flexible, responsive,
problem-based and intricate. (pp. 73-74)

The phenomenon of “chunking” was frequently identified in the

processes of experts (Strahan, 1989, Peterson and Comeaux, 1987) by

which they were able to represent complex situations in simpler, more

automated forms, described by Livingston and Borko (1990, p. 373) as

“rich, well-developed, interconnected and easily accessible cognitive

schema”. Such cognitive organisation allowed successful teachers to

recall large amounts of relevant classroom information (Carter et al,

1987), and quickly and effectively analyse quite complex classroom

situations (Peterson and Comeaux, 1987, p. 321).

In terms of the SOLO Taxonomy, such cognitive organisation is

represented by the difference between multistructural and relational

levels of thinking. Whereas novice teachers tend to view the classroom

situation as consisting of a large number of discrete and interwoven

factors, experienced teachers seem able to draw relations between these

diverse elements, and so to view the same scene as simpler in

structure, and yet revealing of deeper meaning. Carter et al (1987)

noted that experts seemed little interested in remembering much

specific information about students - rather they merged the available

information into a “group” picture (Carter et al, 1987, p. 150). Strahan

(1989), using semantic ordered trees, found that experienced teachers

constructed more complex and intricate representations of classroom

events than novices, and expressed more student-centred views of

teaching (Strahan, 1989, p. 64). Experts, too, made extensive use of
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classroom routines as a means of reducing cognitive load, and

automating procedures by which effective learning could be facilitated

(Leinhardt, Weidman and Hammond, 1987).

Such studies, while rich in descriptive and explanatory power, still fail

to provide an effective means for improving practice. Just as the earlier

studies of successful teaching strategies and behaviours do not provide

the means by which novices or unsuccessful teachers might become

“more expert”, knowledge of the ways in which experts think seems

unlikely to fare any better in this regard. The transition from

multistructural to relational classroom thinking cannot be

accomplished easily; the very nature of teaching as a “complex cognitive

skill” precludes the possibility of a “quick fix”. Similarly, in the context

of the present study, it seems unlikely that the introduction of an

innovation such as computer algebra software will result in changes to

the ways in which the teachers’ cognitively organise their classroom

interactions. The relevant question in this context concerns the likely

effects upon experienced teachers when placed in a “novice” situation.

The implications of the preceding research suggest that the likely effects

of such a classroom change will be upon teachers pedagogic content

knowledge rather than their content knowledge. In fact, it is the

relationship between these two which remains unclear. One of the

points of focus in the proposed study will concern the effects of severing

the links between what the teacher knows, and the ways in which this

content may best be structured and presented in order for effective

learning to occur. The research literature invariably lists expertise in

subject matter as a necessary prerequisite for successful teaching
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(Tobin and Fraser, 1989, Stein, Baxter and Leinhardt, 1990), but the

nature of the relationship between the various forms of teaching

knowledge remains unspecified. Computer algebra tools may be seen as

a means of making explicit some significant aspects of these linkages.

The two approaches to research on teaching which have been examined

above both contain elements of a “scientific” or “analytic” paradigm, the

one focusing upon teaching behaviours and strategies, the other upon

cognitive schemas and thinking. A third option exists which attempts to

view teaching in a more global or holistic way, seeing it as a practice

which bears many of the characteristics of art, rather than science

(Zahorik, 1987), and which describes the knowledge of the successful

teacher in terms of “craft” or “working” knowledge which is intuitive,

difficult to verbalise and complex (Leinhardt, 1990, Gersten, Woodward

and Morvant, 1992). Such approaches are often framed within a

constructivist perspective, which recognises the importance of prior

experience, existing beliefs and multiple kinds of knowledge in the

understanding of teacher practice, and how teachers learn and change

these practices (Sigel, 1984; Leinhardt, 1992, Prawat, 1992). It is

perhaps instructive to note that proponents of the “teacher behaviour”

model such as Tobin, and “cognitive scientists” such as Leinhardt are

now working with these more global approaches to the understanding of

the complex act of teaching.

The work of Tobin and colleagues in recent years, in particular, has

moved away from the extensive study of classroom practices and

strategies and towards the investigation of a particular aspect of teacher

thinking associated with images and metaphors (Tobin, 1990, Tobin,
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Kahle and Fraser, 1990, Ritchie and Russell, 1991). Teachers’ use of

metaphors has been identified as a means by which many particular

beliefs and practices may be categorised and, in some instances,

changed. Such an approach is offered as potentially a means by which

significant change in teacher beliefs and practices may be achieved

(Tobin, 1992):

Identification of salient teaching roles, and the metaphors used to conceptualize
them, offers the possibility of changing what teachers do in the classroom. The
metaphor used to make sense of a role is a master switch for associated belief
sets of teachers . . . Reconceptualizing a role in terms of a new metaphor
appears to switch an entirely different set of beliefs into operation. (p. 6)

 Teachers who are encouraged to identify and critically examine their

existing metaphors for instruction (which may include such descriptors

as “captain of the ship”, “entertainer”, “policeman”, “teacher as

resource”, “social director” and “travel agent”) may then construct new

metaphors which are perceived as more consistent with a desirable

change in teaching practice. Thus, in the study by Ritchie and Russell

(1991) an experienced teacher identified the metaphor of “teacher as

travel agent” in such a way as to be more consistent with a

constructivist mode than her current practice, developed and adopted

the metaphor, and subsequently facilitated a change in instructional

practice in the desired direction.

Such a model, then, offers the possibility of encouraging and facilitating

teacher change in a way which is intuitive and appealing to

practitioners, in that it does not involve identifying and attending to an

array of variables and particular practices, but occurs on a deeper, less

rational level. It seems likely that such an approach moves the focus of

teaching from the concrete-symbolic mode of the SOLO Taxonomy to the
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intuitive, global ikonic mode. The existing research has already implied

the importance of ikonic thinking by teachers, noting, for example, that

“experts ‘see’ an entire scenario or episode before they act” (Leinhardt,

1989, p. 73), and recognising that, in addition to being a “complex,

cognitive skill” teaching may also be conceived in terms of

“improvisational performance” (Livingston and Borko, 1990).

The analysis and development of metaphors, then, may provide effective

means by which preservice teachers may be assisted to think about

changes in practice which are likely to effectively incorporate computer

technology. Existing images and metaphors may provide important

clues as to factors which may act to both encourage and inhibit such

changes.
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Three

Review of the Tools

The selection and development of appropriate mathematical tools

occupied a critical position, not only in the early stages, but throughout

the course of the project. Although a wide and growing range of

advanced mathematical software applications exists, relatively few such

tools were considered appropriate for the purposes of this study. Since

the research was aimed at mathematical learning situations spanning

the secondary school years, the vast majority of mathematical software

tools were rejected, since most were designed for senior secondary,

post-secondary or even professional mathematical applications, with

little consideration given to students of lesser mathematical capability

and experience.

The choice of appropriate software was governed principally by three

criteria:

(1) Interface

(2) Cost, and

(3) Mathematical functionality.

These criteria are listed in order of the importance accorded to them

when selecting tools for use within this study. The review which follows

examines examples of three major software types - algebra, graphing

and number tools - from these perspectives. In this way the eventual
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choice of tools may be better understood, and the particular strengths

and weaknesses of each appreciated.

Algebraic Tools for Teaching and Learning

The symbolic language of mathematics was designed over time as a

means of expressing the complex and powerful ideas and processes

associated with the activity of doing mathematics, and only incidentally

with the related activities of teaching and learning mathematics. Its very

elegance and efficiency may in many ways serve to obscure

fundamental understandings on the part of those with limited

mathematical experience and, indeed, to deny entry to the “uninitiated”.

When coupled with the extra demands of entering and interpreting

mathematical text using a computer, additional burdens are placed

upon learners who often already find difficulty enough with

mathematical syntax and symbolism.

The majority of algebra and graphing software packages adopt what is,

for them, the simplest approach, requiring the user to enter

mathematical statements using “command-line syntax”, borrowed from

computer programming. Thus, entry of an expression such as
1 + 2x
1 - x2

would require the user to type ( 1 + 2 * x ) / sqrt ( 1 - x^2 ). Such an

entry mode not only demands that the user learns additional

syntactical commands and conventions, but denies access to the

important visual cues by which mathematical notation is most easily

recognised and interpreted (Kirshner, 1989). While those with extensive

mathematical experience may not be unduly inconvenienced by such
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demands, those with lesser experience, and especially those first

learning the conventions of algebra, might be expected to be

significantly disadvantaged.

Figure 3.1: BiPlane 2.0: A typical spreadsheet format

This problem is further exacerbated in the case of spreadsheets, in

which the symbolic variable is replaced by reference to a cell location,

such as A3, or even $A$3. An algebraic formula, such as

3x2 - 4x + 1

when adapted to a spreadsheet assumes a form such as

=3*A3^2-4*A3 + 1

in which the leading “=“ sign indicates the commencement of a formula,

and variable references point to an entry in a particular cell, A3 (see

Figure 3.1). Asp, Dowsey and Stacey note the potential confusion for

some students in the use of a symbol (“=“) already burdened with

several mathematical functions (1993b, p. 90). Some spreadsheets offer

a degree of relief for this problem by allowing a cell location to be
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entered automatically by simply clicking on the cell, using the mouse.

In this way, students do not need to enter the cell location in symbolic

form, but must still specify all operations required.

 This version of algebraic formatting appears to serve as both strength

and weakness in defining the role of the spreadsheet as a tool for

algebra learning. Although the entry and formatting of algebraic

statements can be difficult and confusing, the reference to individual

cell locations with distinct numerical values encourages students to

perceive of variables as dynamic processes (with multiple numerical

values) rather than the static placeholders so often associated with the

use of symbols such as “x” and “y”. The unique capacity of the

spreadsheet to expose the numerical bases for algebraic forms and

expressions offers some encouragement for teachers to persevere with

their use in algebra learning. It seems likely, however, that a simple

“table of values” utility (in which an algebraic formula is entered in the

more usual form, and features such as initial value, step size and

number of steps may be controlled by the user) offers many of the

advantages of the spreadsheet without the more difficult interface

problems. For this reason, one of the first utilities developed for this

study using HyperCard was a Table of Values tool, in which it was

sought to offer the advantages of the spreadsheet in a simpler format.

Designed to accompany a HyperCard-based graph plotter (adapted from

one by Dr Khoon Yoong Wong of Murdoch University), the table of

values was perceived as an important representational tool which

encouraged users to perceive of algebraic forms as defined in terms of

numerical processes. Dynamically linked with the graph plotter, it was

seen as important for students to learn to move freely among symbolic,

graphical and numerical forms.
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Spreadsheets hold the honour of being the oldest mathematical

software tools available for microcomputers (at least in schools), and

have certainly been the among the most ubiquitous (since most school

computers from the earliest days provided access to integrated software

packages, traditionally offering word processing, spreadsheet and

database capabilities). The difficulties associated with their use, coupled

with the traditional nature of school algebra (dominated by a focus

upon algebraic “objects” as opposed to the “process” approach offered

by these numerical tools), have served to minimise the impact of

spreadsheets upon mathematics learning situations, and may even

have helped to contribute to what appears from this study to be a fairly

widespread view among teachers of computers as being, for the most

part, incompatible with school mathematics (Messing, 1994).

Figure 3.2: Grapher 3.61s: A typical graph plotter
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If spreadsheets have largely failed to excite teachers of mathematics

with their potential, the same cannot be said of graph plotters. Since

spreadsheets were designed as tools for business rather than learning,

the first true mathematical software available for school computers

consisted of tools for plotting functions. Now increasingly available and

affordable in hand-held form, the evidence of this study indicates that

teachers of mathematics appear very comfortable with this application

of computer technology. Participating students and student teachers

had little difficulty in using graphing tools, supporting the view that

these tend to sit comfortably “alongside” existing practice, as opposed to

applications such as spreadsheets and computer algebra tools, which

appear to critically confront such practice. Indeed, as discussed in the

study which follows, while physical factors such as interface, cost and

capabilities may at first appear to be the principal stumbling blocks for

the use of mathematical software in schools, it is likely that there are

deeper political aspects related to mathematical tool use which provide

a far more influential barrier to their implementation in schools.

As specialist tools for mathematics teaching and learning have been

developed over the past decade, increasingly attempts have been made

to adapt these to school situations. The problem of interface has been

confronted by different applications in a variety of ways. While most

retain the one-dimensional format of BASIC programming, some have

developed a two-dimensional approach, in which exponents are raised

and multiplication is implicit. Such programs include free and

shareware algebra tools for the Macintosh platform such as Mathmaster

2.21 and CoCoA 1.0c, which both support the entry of numerical

exponents using the option key, a feature adopted in the HyperCard-

based MathPalette, developed for this project. This simplified entry
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process makes such tools readily accessible for younger students, and

provides many of the important visual cues which aid in interpreting

mathematical statements.

Extending this two-dimensional format are programs such as

ANUGraph, Milo™ 1.00 and Theorist (all on the Macintosh). These

programs support the entry of mathematical expressions using menus,

templates and palettes, from which mathematical forms may be chosen

without the need to learn additional commands or syntactical

conventions peculiar to the computer. The palette which became the

basis for the MathPalette was based upon these principles, allowing

entry entirely from visual cues and immediately producing full two-

dimensional mathematical formatting. Coupled with simplified keyboard

entry (such as the use of the option key for exponents and subscripts,

and the “up” and “down” arrows for numerators and denominators of

fractions), the palette allows quick and easy entry for both experienced

and inexperienced users. Further, by converting the mathematical

expression into “text-file” format at the same time, the MathPalette

allows the user to access other software tools, within which the

expression may be “pasted” using the usual Macintosh commands.

Thus, the MathPalette was designed to serve as a common “front-end”

for a range of available tools, and to further encourage exploration and

the use of multiple representations.

The mathematical tools now available to teachers vary widely in their

capabilities, their formats and, most of all, in their costs. The most

expensive program considered (Theorist from Prescience) costs over

$500 (although the Student Edition, selected for use as a principal tool

in this project, costs only $105); the least expensive (MathMaster and
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CC3) are free to be copied and distributed, with a nominal fee requested

if the application is to be retained and used.

The most functionally extensive of current mathematical software,

Mathematica (Wolfram Research), was rejected early. This was not only

because it was too expensive (available at between $200 and $300 for

the Student version) but also because it will not run on the type of

hardware schools are likely to have available. Requiring over 6

megabytes of RAM to operate effectively, its demands are too great for

the models most likely to be found in even better equipped school

computer laboratories.

Similarly, Maple V (Brooks Cole Publishing) was considered and then

rejected. Although capable of running (slowly) on the minimal machines

likely to be available to schools, and offered in an affordable Student

Version (at $150), the interface of this program, similar to that of

Mathematica, was considered too difficult to support its use across the

secondary years. Both packages offer extensive arrays of mathematical

commands (Maple offers over 1400 commands), but expressions must

be entered in one-dimensional form, and specific commands and

syntactic forms are required. It was felt that such programs add

significantly to the burden faced by students in learning algebra.

The various capabilities of these programs have been summarised in a

table (Table 3.1). Applications from only two computing platforms -

Macintosh and MS-DOS were considered for the project, since these

offered the greatest range of possible software and appeared most

prevalent in schools.
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Software Summary

Theorist Derive Calculus

T/L II

Math-

Master

xFunctions

2.2

Math-

Palette

 Platform

 Cost

Macintosh

$105

DOS

$200

Macintosh

$105

Macintosh

Free

Macintosh

Free

Macintosh

$25

 Algebra :
 Simplify
 Factorise
 Solve equations
 Substitute

-
•

-
-
-

•
-

 Graph
 2 dimensional
 3 dimensional
 Polar
 Parametric

•
-
-
-

-
-
-

 Calculus
 Differentiate
 Integrate (def.)
 Integrate (indef)

-
-
-

- -

 Presentation:
 Text capabilities
 2D notation

-
•

- -
-

•

 Other Options:
 Table of Values
 Exact Arithmetic
 Complex Arithmetic
 Inequalities
 Matrices
 Statistics

•

•

• •

-
-
-

-
-

-
-
-
-
-

•
•

-
-

• This indicates that this feature is present in a limited way.
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Selected Algebra Tools

Theorist: Almost unique in this field, Theorist is a Macintosh program

which fully utilises the graphical interface to provide true mathematical

notation in a reasonably transparent format.  Almost as powerful and

extensive in its rule base as Maple, this program appears to be a most

appropriate package for teaching and learning in secondary schools.

Fully menu-driven, with extensive calculus and algebraic capabilities,

as well as two and three dimensional graphing and animation,

mathematical expressions and equations may be entered by simply

pointing and clicking at an available palette, relieving students of the

need to learn additional syntactical conventions and commands in

order to enter mathematical forms. Files, called “notebooks”, offer a

mixture of text, graphics and mathematical forms, allowing the creation

of interactive worksheets and exercises by the teacher, and annotated

responses and solutions by students.

The ability of this program to manipulate terms, solve equations and

substitute values into expressions using the graphical interface of the

Macintosh is quite unique. Algebraic terms may be relocated by simply

“dragging” with the mouse, allowing, for example, equation-solving

which physically emulates methods commonly used which involve

transferring terms across the equality. Graphs in both two and three

dimensions (including relations such as conic sections) are simple to

create and edit, and may also be manipulated by hand (dragged and

rotated); these may also be animated with ease to produce a moving

picture which can be used to illustrate the effects of variable changes.

This program offers unprecedented control by the user over the various

mathematical representations available - symbolic, graphical and
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tabular. It was adopted as the preferred tool for the current project.

Three copies of the Student Edition were donated for the purposes of

this study by the publishers (Thomas Nelson Australia), allowing it to be

made available to those cooperating in the gathering of data.

Figure 3.3: Theorist

Derive: The MS-DOS equivalent to Theorist appears to be Derive, the

successor to muMATH (which was the first serious attempt at computer

algebra for personal computers). Derive is fully menu-driven, extensive

in its mathematical capabilities, and presents mathematical output

correctly. Input, however, must be entered in “linear” format, with the

advantage of implicit multiplication (enter only 2x - 3, not 2*x - 3 as you

need to do with Maple V and several others), and simplified (ALT key)

commands for √, π, e and i.
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Figure 3.4: Derive

While not possessing the ability to freely mix text with graphics and

calculations, Derive does give the user the option to operate up to eight

different screens at the same time. It will carry out all the mathematics

required up to University level, and yet is intuitively easy to use.

Although expensive for individual copies (around $200), network and

Lab prices are more affordable at $1195 for 10 copies networked, and

$1395 for a Lab pack. Like Theorist on the Macintosh, this was chosen

as the recommended tool for MS-DOS users in terms of ease of use and

mathematical power.

Calculus T/L II: This powerful computer algebra package offers a “point

and click” interface which accesses Maple’s algebraic “engine”. Available

only on the Macintosh platform, it includes an extensive array of

tutorial files, in addition to complete algebraic capabilities and two- and

three-dimensional graphing. Calculus T/L is structured to support the

inexperienced user: selecting any object on the screen provides access
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to the range of operations and functions which are appropriate to that

object. In this way, students confronted by a “blank page” are

supported in terms of their possible options, and the uncertainties often

associated with problem solving and computer use are minimised.

Figure 3.5: Calculus T/L II

Respondents using the various software tools found this to be both easy

to use and extensive in its mathematical capabilities. It became the

preferred option for some, even over a program such as Theorist, with

its superior formatting and presentation.

MathMaster 2.21 : Originally released in 1987 as “shareware”, this

program was withdrawn from circulation by the author, who did not

wish to continue upgrading it to newer Macintosh versions and models.

After some correspondence, he was persuaded to allow it to be

distributed freely for educational purposes and, in particular, to be
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used for the current study. This is an excellent program for basic

algebra and co-ordinate geometry from junior to senior years. Its

capabilities include operations on numbers and polynomials (from +, -,

x and ÷ to greatest common factor and lowest common denominator),

simplification of algebraic expressions, solution of linear equations and

inequalities (both algebraically and graphically), co-ordinate geometry

(graphing and solving linear equations and inequalities in two variables,

as well as finding equations given intercepts, slope, points and so on).

Figure 3.6: MathMaster 2.21

The Macintosh interface is used to advantage (including the ability to

place exponents in position by using the option key with the required

number). Thus an expression such as 3x4y2 - 2xy3 may be entered

quickly and directly. Worksheets may be created, and the results are

presented with appropriate comments to describe the process involved.
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Although limited in its mathematical functionality in comparison with

those programs described above, MathMaster offers an appropriate

interface and basic algebraic capabilities which make it an attractive

tool for schools which often cannot afford site license versions of the

commercial programs.

Figure 3.7: MathMaster: Solution of Linear Inequalities

Additionally, MathMaster offers some particular advantages over the

more powerful algebra tools. Algebraic expressions, for example, may be

entered term by term, with students selecting the appropriate

operations which will link them. This forces students to “reconstruct”

algebraic forms from the visual printed original, which may often be

perceived superficially. The coordinate geometry and equation solving

features, too, provide a quick and convenient means for verifying

solutions and exploring alternative forms.
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Figure 3.8: xFunctions 2.2

xFunctions 2.2: This multiple representational tool offers extraordinary

versatility in a program freely available for educational purposes.

Functions may be entered in three forms - as expressions (using the

usual linear form, but allowing “split-domain” or “piece-wise” functions

to be easily defined), as graphs (where the user actually creates the

graph by clicking and dragging on a pair of coordinate axes), and as a

table of values (entering the function values as x- and y-coordinates).

Once entered, functions may be viewed in any of five representations: as

expressions, graphs, tables, input-output boxes or as “diagrams”,

illustrated below. Figure 3.8 displays the “diagram” for the function

defined by y = 2*x for x < 0 and y = x2 for x ≥ 0. This unique ability to

expose the process of a given function appears to offer much in
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assisting students to develop versatile understandings of function

concepts.

Figure 3.9: xFunctions Graph

The graphing capabilities of

this program are fast, clear

and effective, allowing

ready access to this

important representation,

while at the same time

encouraging them to go

beyond and explore other

forms of the function under

consideration.

In addition to the input and output capabilities of this tool, a range of

mathematical features are also available, including three-dimensional

plotting, animation of functions, derivatives, areas under curves,

parametric forms and differential equations. This is an exceptional

package for teaching and learning function concepts at all levels.

The Derivatives option illustrated in Figure 3.10 is typical of the

capabilities of this program as a teaching and learning tool. In addition

to the function, first and second derivatives are displayed, and tangent

lines and points are available interactively using the mouse.

Additionally, first and second derivatives are available in symbolic form,

if desired.
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Figure 3.10: xFunctions Derivatives Option

One of the few problems associated with this program is that of entry of

mathematical forms. Once again, the user is forced back to one-

dimensional input. It was as a particular response to this problem (and

the desire to make use of the capabilities of this and other suitable

programs) that consideration was given to developing a “front-end” - a

program which would allow mathematical expressions to be entered

easily without use of specialised syntax or commands, and then capable

of accessing other software tools and “pasting” the expression in. The

result was the MathPalette.

Conclusion

While a number of other software tools were utilised during the course

of the project (including the calculator, PCalc, the tutorial package, Are
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You Ready for Calculus?, the unique interactive geometry package,

Cabri-Geometrie, CoCoA (a commutative algebra tool which offers useful

facilities for expanding and simplifying polynomials, substitution and

fraction capabilities) and the version of LOGO developed by the

University of California Berkeley) the packages described above served

as the principal algebraic tools for data gathering from students,

teachers and student teachers over the two years of this phase of the

project. When combined with the HyperCard modules developed for the

study, participants were provided with both context and available tools

for exploring algebraic ideas and skills, and the means by which such

interaction might be observed. The modules, forming the package

Exploring Algebra, are described in the following chapter on the

research design. The development of the supporting multiple

representational tool, The MathPalette, in response to interactions of

participants with available tools throughout the course of the study

occupies a significant part in the subsequent description of data

gathering and results,
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Four

The Research Design

Classroom life, in my judgement, is too complex an affair to be viewed or talked
about from any single perspective. Accordingly, as we try to grasp the meaning
of what school is like for students and teachers we must not hesitate to use all
the ways of knowing at our disposal. This means we must read, and look, and
listen, and count things, and talk to people, and even muse introspectively over
the memories of our own childhood.

[Jackson, 1968 in Howe, 1988, pp. 11-12]

This study examines mathematical software use within the context of:

• characteristics of the user, in terms of both algebraic and

pedagogical thinking (defined below), and

• characteristics of the learning environment, which includes

the software tools themselves and the conditions under which

they are used.

Within an action research framework, the study examines ways in

which individuals learning about algebra make use of available

mathematical software, and embodies the major findings within the

ongoing development of a computer-based learning environment and

accompanying mathematical tools. A theory of mathematical software

use is developed using a grounded theory approach, providing a

framework for future use of open-ended mathematical software tools in

mathematics learning situations, and identifying features associated

with both the potential and the pitfalls of the use of such tools. As

explained by Strauss and Corbin (1990),
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Formulating theoretical interpretations of data grounded in reality provides a
powerful means both for understanding the world ‘out there’ and for developing
action strategies that will allow for some measure of control over it. (p. 9)

The design of the study and the subsequent gathering of data are driven

by the following research questions:

• What do individuals (researcher, students and preservice

teachers) understand by algebra and its components

(especially functions, variables, equations, graphs and tables

of values) and how might such understandings be related to

the use of computer tools?

• What do individuals perceive when they view algebraic objects

and how may these perceptions influence their choice and use

of available strategies (including the use of mathematical

software)?

• What beliefs do individuals bring with them to algebra

learning situations concerning the nature of algebra, the ways

in which it may best be learned, and the characteristics of

successful learning and effective teaching practice? To what

extent may such beliefs impact upon the use of technology as

a learning strategy?

• Under what conditions do individuals choose to use available

software tools, and what forms does this use take? What

features of both tool and learning situation serve either to

impede or encourage such use?
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The Research Instrument

As a means of generating and gathering data related to the focus

questions defined in Chapter One, a HyperCard-based research tool

was developed: Exploring Algebra (Arnold, 1993), when used with

appropriate advanced mathematical software, provides a tool by which

research questions regarding the issues described above may be

addressed. By providing an immediate record of user actions as they

engage in the use of available tools, and making explicit aspects of their

thinking and understanding arising from such use, it potentially offers

a powerful means for collecting data on both pedagogical and

mathematical thinking at all levels. When used in conjunction with a

range of pre- and post-use data collection activities, the possibility

exists for describing and explaining elements of thinking which are of

critical importance in mathematics learning within a tool-based

context. The research method is recursive, as the computer assumes

dual roles as both object of focus and primary method of inquiry.

In order to create an appropriate research instrument, it was necessary

initially to structure an “algebraic learning environment” - a series of

instructional modules which attempted to synthesise the major

findings of research into algebra learning of the last decade. These

would then provide context for the use of additional mathematical

software tools. Although the tools under investigation in this study are

open-ended (presenting the user essentially with a “blank page” for

computation) their use does not occur in isolation. The context of this

use becomes critical in seeking to describe and understand the

interactions of teachers and students with such tools. By creating and

structuring such a context, the research instrument allows this
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variable to be controlled in the design; by recording the interactions of

the users with computer tools within such contexts, it becomes

possible to capture a detailed record of both action and written

description of their parts. Additionally, this research and learning

context itself becomes a focus for development within the action

research framework of the study.

In order to better understand the design of the research tool under

discussion, then, it becomes necessary to first describe its nature as an

“algebraic learning environment”.

The Computer as an Algebraic Learning Environment

Open-ended mathematical software of the type described here is never

used in a vacuum. Rather, its use is dependent upon context and the

characteristics of the individual learner. In order to focus upon these

individual characteristics, and to control for the contextual element, a

series of instructional modules was designed using HyperCard on the

Macintosh, with the following as primary considerations:

• To provide simple and immediate access for students and

teachers to the powerful computer tools by which the teaching

and learning of algebra across the secondary school might be

enhanced (these included computer algebra, graph plotting

and tables of values as central tools, supported by LOGO and

other quality mathematical software which the user might

have available).

• To provide meaningful and challenging contexts for the use of

such software tools, creating a learning environment which

encourages exploration of the key concepts as they arise, and
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providing the means by which such investigations might be

carried out. The instructional modules developed towards this

end were conceived as providing a starting point from which

advanced mathematical software might be used to enhance

the learning of algebra.

• To provide a means of monitoring the progress of those who

would work through the program, supporting the collection of

data on the path taken through the modules, the time spent

at each stage, the choices made, in addition to any comments

made and answers to questions in the materials. The record of

transactions with the materials is collected and saved as a

text file, which may then be read directly into the chosen

qualitative analysis tool, NUD•IST (Richards and Richards,

1993).

The instructional basis for the program builds upon the considerable

research of the past decade into algebra learning and misconceptions,

representations and the development of concepts such as function and

variable, so central to success within this domain. Such research in

algebra learning appears to be converging to recommend the following

changes to existing instructional and curricular patterns (Australian

Education Council, 1990, NCTM, 1989, Romberg et al, 1993):

• A focus upon “functions” and “variables” as the organising

principles for algebra learning in the secondary school,

moving away from the previous focus upon “equations”.

• Increased emphasis upon teaching the ideas and

manipulations of algebra linked to and embedded in real-life

contexts.
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• Increased versatility in the modes of representation used to

describe these algebraic ideas.

• Concrete foundations for algebraic manipulations using

manipulatives (possibly linked to computer representations).

• Early and more extensive focus upon PROCESS (operational)

conceptions of algebraic ideas and decreased emphasis upon

the OBJECT (or structural) focus which has dominated to the

present day.

The implications of such research, then, are essentially threefold. As

much as possible, the algebra learning environment should provide

context and meaning for the algebraic ideas and processes presented; it

should increasingly emphasise the process dimension through frequent

reference to the numerical and operational bases of the algebraic ideas

they encounter, and students must experience a variety of

representations, developing the skills to move freely among these.

As described above, the program was conceived initially as a means of

placing powerful mathematical software at the fingertips of teachers

and students in mathematics learning situations. As such, it was

considered important to provide two scenarios - an open-ended

“workspace”, where expressions of interest might be entered and

investigated, supporting a range of instructional modules where

examples and background information might be given, questions and

problems posed, and the means and motivation provided by which the

concepts of algebra may be explored.

Within the instructional modules, each screen (or “card”) provides a

“control panel” down the right-hand side, with buttons which will open
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computer algebra, graph plotting and table of values tools. Other

buttons are designed for navigation (forward and back, return to menu

and index cards). A “Tool Box” button takes the user to a card from

which any available software tools may be accessed; a “Comments”

button allows comments, responses and criticisms to be entered at any

time, to be included in the session record.

Figure 4.1: A card from Exploring Algebra

In order to further facilitate the use of the software tools, and to

encourage exploration, mathematical expressions throughout the

program made use of hypertext facilities: clicking on any such

expression (such as the three equations shown in Figure 4.1) plots the

graph; holding down the shift key produces a table of values; holding

down the option key opens a selected computer algebra tool, where the

expression may be entered simply by “pasting”. In this way, these three
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powerful means of investigation and representation are automated and

simplified, encouraging students and their teachers to explore the

relationships between the various representations.

Exploration is also encouraged through the use of “control key”

commands which are available at any time (for example, CTRL-A will

open the selected computer algebra tool, CTRL-G will open a graph

plotter, CTRL-S the spreadsheet) while the presence of an additional

“utilities menu” at the top of each screen provides further access to the

tools and other commonly used features of the software.

In response to evaluative comments from students and preservice

teachers, the “workspace” was subsequently developed to allow the

entry of algebraic expressions and equations through a “point and

click” interface, removing the need for students to learn the additional

syntax normally associated with algebraic and graph plotting software.

Initially conceived as simply a tool for simplified entry of algebraic

expressions, the development of the MathPalette accompanied the

gathering of data from students, teachers and student teachers

throughout the course of the study. As difficulties were encountered or

weaknesses observed in the available software tools, so was the

MathPalette extended and improved. The many features of this tool -

the simple and mathematically correct interface, powerful graph

plotting and table of values facilities, the concrete algebra modes, tools

for substitution and solving, for coordinate geometry and for “Guess My

Rule” games - resulted from interactions and observations over the

period of the study, and reflected needs and priorities arising from the

data. The research design, then, included a “research and development”

component, with the latter an important key to understanding the use
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of software tools. The MathPalette accompanied the Exploring Algebra

modules, and was available at any time within the program,

encouraging student exploration and mathematical interaction.

The program, then, was designed to encourage the exploration of

algebraic ideas in contexts both meaningful and versatile. Students

(and their teachers) are provided with tools for developing deeper and

richer understandings of the concepts of function, variable and

equation, so central to success throughout the study of mathematics.

As LOGO has been described as a mathematical “microworld”, so was

Exploring Algebra intended to support a “learning environment” within

which deeper and more versatile understandings might be possible. 

The Algebraic Context and Research Questions

The mathematical context for the study was provided by the series of

instructional modules developed for this purpose using the textual,

graphical and interactive capabilities of HyperCard. Topics were chosen

ranging from introductory algebraic experiences to calculus and open-

ended problem-solving. These were then developed in such a way as to

encourage the use of available computer tools. The materials were

designed to support the development of central mathematical concepts

such as function, domain and range, as well as providing context for

the learning of algebraic skills, such as equation solving. An overview of

the instructional modules is presented in Figure 4.2, followed by a

description of each (see Arnold (1993) for a detailed transcription of the

content of the modules).
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Figure 4.2: Overview of the Exploring Algebra modules

Upon choosing a particular module, a probe question is asked. Four

different probes exist at each section, depending upon whether the

individual is a student or “teacher” (referring to preservice teachers)

and whether this is the first occasion that the individual has chosen

this option or a subsequent choice. The probes centre upon student

thinking about the objects of algebra (functions, variables and

equations) and pedagogical aspects of the module for preservice

teachers. Each time a session commences, additionally, a focus probe

requests an explanation of the user’s understanding of algebra, and

how it is best learned. Although students were not required to answer

this query every time, it provided a central recurring theme in the data

from all participants. Importantly, each time an algebra, graphing or

other software utility was used, a probe would follow which queried the
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nature of this use and the effectiveness perceived by the user. This was

a critical component of the research design.

• Beginning Algebra provides an extensive introduction to the

ideas of function and variable using a variety of approaches.

Upon choosing this module, the initial teacher probe was: “As a

teacher, how would you sequence an introduction to algebra?”

(This initial probe is referred to subsequently as T1.)

The subsequent teacher probe was: “What skills and

understandings do you consider essential for students to be

successful in algebra?” (Henceforth, T2.)

The initial student probe was: “What things do you consider

essential for success in mathematics?” (S1)

The subsequent student probe was: “What things do you consider

essential for success in algebra?” (S2)

Responses were open-ended, entered from the keyboard at the

prompt. The questions were devised to deliberately explore thinking

related to understanding of mathematical concepts and perceptions of

effectiveness in learning. Occurring at both beginning and end of each

major topic, they attempt to capture changes in thinking which may

have resulted from the interaction.

The module consisted of five sections, each stressing a different

aspect of introductory algebra:

(i) Introducing functions: a textual and graphical development

of the function concept using real-world applications

(families, boyfriends/girlfriends) to introduce the

uniqueness property of function and, at the same time,
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the concept of “ordered pair” and its graphical

representation. This section concluded with a

mathematical application using a “function game”, in

which the player is invited to enter numbers and observe

a numerical output, and so to guess a selection of simple

“number rules”. The user is prompted to use a simple

table of values representation and, if desired, to observe

the corresponding graphical form.

Probes at the conclusion of this section were:

T1: How would you describe a function?

T2: How would you describe a function now?

S1: What does function mean to you? Please give some

examples.

S2: Do you feel that you understand function any better now?

How would you describe a function to a friend?

(ii) Introducing Variables: The concept of variable is similarly

introduced using real-world applications: first, the

“Tomato Problem”, in which students use tabular

information to deduce first numerical and then symbolic

relationships. This is followed by “Mowing and

Mathematics”, an open-ended problem-solving experience

in which students are encouraged to use tables of values

and graphs to initially describe and then infer advantages

and disadvantages arising from the problem situation.

Finally a mathematical application - “Some Tricks with

Numbers”, in which students play the traditional “Think

of a Number” game, supported by tables of values and

computer algebra. In this way participants are introduced
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to the three major representations and the tools by which

these may be accessed.

At the end of this section, participants were again probed:

T1: How many different types of variable could you describe?

T2: What does variable mean to you? Please give some

examples.

S1: Do you feel that you understand variables any better now?

How would you describe a variable to a friend?

S2: How would you describe a variable now?

(iii) Patterns with Shapes builds further upon the use of the

tabular representation as a means of thinking about

situations involving variables. In this case, the derivation

of numerical patterns from sequences of geometric shapes

(building triangles, squares and other shapes using

“matchsticks”) is facilitated by a tabular array. In this

form, students are invited to make conjectures and to

derive both verbal and symbolic descriptions of the

patterns they observe. Probe questions were:

T1: As a teacher, how do you feel that patterns relate to

functions and variables?

T2: As a teacher, what value do you see in using patterns to

introduce algebra?

S1: Have these patterns helped you to understand algebra any

better? If so, how?

S2: How do patterns relate to algebra?

(iv) Variables with LOGO briefly introduces simple LOGO

procedures for building squares, triangles and hexagons

Page 117



Learning to Use New Tools The Research Design

(assuming some limited prior experience) and then moves

on to the use of variables as a means of generalising these

figures. Students are invited to use LOGO and variables to

further explore recursion in geometry.

(v) Concrete materials have increasingly assumed a

significant role in early algebra, and this final section

introduces formal symbolic notation using concrete

representations, in which letters are assigned to represent

areas of given shapes. In this way, students recognise that

a letter so defined has a particular numerical value which

is arbitrarily defined by the model, and that such letters

may be manipulated and simplified, while retaining their

numerical links. This important representation is linked

to an interactive HyperCard model, by which students are

invited to create their own algebraic expressions using

shapes provided, to substitute values into these and then

to evaluate the results (Figure 4.3).

Final probe questions for the module were:

T1: As a teacher, what value (if any) do you see in using

concrete approaches in algebra?

T2: How might concrete approaches be used in class by

students learning algebra?

S1: Do you feel that you understand algebra any better now?

How would you explain a variable to a friend?

S2: Do you feel that you understand algebra any better now?

Please explain.
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Figure 4.3: Concrete Expressions card

The module concludes with a short review section, consisting

of ten multiple choice questions related to basic

generalisation, simplification and substitution of values.

• Equations and Problem Solving continues the versatile

introduction to the important ideas of function and variable

applied to equation solving. Again, the manipulative aspects of

the process are left until last. Emphasis is placed upon

numerical, graphical and concrete methods before symbolic

approaches are introduced. The module consists again of five

sections, the four approaches just described, followed by an

application based upon the “Mowing” problem introduced in the

previous module.

Page 119



Learning to Use New Tools The Research Design

Figure 4.4: Equations in context

Initial probes were:

T1: As a teacher, how would you sequence the topics in an

introduction to equation solving?

T2: What skills and understandings do you consider essential for

students to be successful in solving equations?

S1: What things do you consider essential for success in solving

problems in mathematics?

S2: What things do you consider essential for success in

mathematics?

Concluding probes were:

T1: As a teacher, how would you approach teaching equation

solving now?

T2: How might concrete approaches be used in class by students

learning equation solving?
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S1: Do you feel that you understand equations any better now?

How would you describe a variable to a friend?

S2: Do you feel that you understand equations any better now?

Please explain.

Again, a ten-question quiz concluded the module.

• Coordinate Geometry is presented as a series of problems, for

which students are invited to use the computer tools available.

Again, manipulative aspects are deferred until students have

used the various mathematical tools - midpoint, distance,

gradient and equation of a line - within various contexts. These

mathematical tools are readily available using either the

HyperCard based graph plotter provided, or the mathematical

application, MathMaster 2.21, which supports both deriving

equations of lines and the solution of simultaneous linear

equations and inequalities.

Initial probe questions were:

T1: As a teacher, how would you sequence the topics in an

introduction to coordinate geometry?

T2: “What skills and understandings do you consider essential

for students to be successful in coordinate geometry?”

S1/2: What things do you consider essential for success in

number plane work?
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Figure 4.5: A card from Coordinate Geometry

• The Language of Graphs takes a similar approach, providing a

series of problems involving either interpretation of a given

graph, or the derivation of a graph to represent a given situation.

This unit was seen as an important preparation for later work

involving graph interpretation, particularly in the introduction to

calculus.

Initial probe questions for the graphs module were:

T1: As a teacher, how would you sequence the topics in an

introduction to graph interpretation?

T2: “What skills and understandings do you consider essential

for students to be successful in interpreting graphs?”

S1/S2: What things do you consider essential for success in

understanding graphs?
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Figure 4.6: Modelling with Graphs

• Curve Sketching is an extensive unit which introduces families

of functions and then examines in detail absolute value and

reciprocal functions, as means by which students may become

familiar with both the graphical representations of algebraic

forms, and the effects of transformations upon both. The module

concludes with an extension involving three-dimensional graphs

of functions, supported by available software tools (especially

xFunctions 2.2).

 Probes for Curve Sketching followed a similar pattern to those of

previous modules:

T1: As a teacher, how would you sequence the topics in an

introduction to curve sketching?
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T2: What skills and understandings do you consider essential for

students to be successful in curve sketching?

S1: What things do you think are most important for success in

drawing graphs of functions?

S2: What things do you think are most important for success in

curve sketching?

Figure 4.7: Curve Sketching

• Completing the Square is another module which was developed

extensively. It explored, not only ways in which computer

algebra, graphing and tables of values might be used as tools for

exploration, but also interactive aspects of the HyperCard

programming language which supported its use as a tool for

mathematical investigations. Together with the modules

Investigating Inverses and Composite Functions, these

provided opportunities for students to explore aspects of
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functions which involve higher order thinking - functions acting

upon other functions to produce new functions. Each provides

text-based information and interactive means of exploring the

ideas presented for a variety of functions.

Figure 4.8: An application of Completing the Square

Initial probes for this section (entitled “Exploring Functions”) were:

T1: As a teacher, what do you see as critical to an understanding

of functions?

T2: How would you explain what a function is to a student who

did not know? What examples would you give?

S1: How would you explain what a function is to someone who

did not know? What examples would you give?

S2: What things do you think are most important in

understanding functions?
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• Numbers, Numbers, Numbers... offered another module which

combined related units - in this case, Continued Fractions and

Roots of Polynomials. Both offered means for exploring ideas

related to irrational numbers, using both mathematical and

computer-based tools.

Figure 4.9: A Continued Fractions Investigation

These units were prefaced by the following probes:

T1: How would you sequence an introduction to the ideas of

irrational numbers?

T2: What skills and understandings do you consider essential for

students to be successful in working with numbers?

S1: What things do you think are most important in

understanding irrational numbers?
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S2: What things do you think are most important for success in

working with numbers of all types?

• Introduction to Calculus was designed as a problem-based

introduction, in which students could use the graphing and

manipulative capabilities of the available software to “discover”

the basic rules of calculus. This is in contrast to commonly-used

teaching approaches in which the rules are provided by teacher

or text and simply learned and practised. The module begins

with ideas of “local straightness” (explored using the zooming

capabilities of the technology) in order to build an understanding

of the critical concept of gradient at a point.

Figure 4.10: An Introduction to Calculus

Again, the initial probes focus upon the teaching sequence for

the student teachers and student perceptions of success.
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T1: As a teacher, how would you sequence the topics in an

introduction to calculus?

T2: What skills and understandings do you consider essential for

students to be successful in calculus?

S1: What things do you think are most important for success in

mathematics at the higher levels?

S2: What things do you think are most important for success in

calculus?

This unit makes extensive use of computer support. Students are

encouraged to view graphs and tables of values of the functions

they encounter as a means of strengthening their familiarity with

these forms. Early emphasis in the unit is placed upon the

acquisition of skills of estimation related to derivatives - students

are expected to be able to visually estimate the graph of a

gradient function given the graph of the original. They are also

provided with graphing and table of values facilities which

represent the derivative and integral of a function without giving

its symbolic form. In this way they are encouraged to discover

the various rules by building upon their knowledge of functions

in these representations. Finally, software tools such as

xFunctions and CoCoA are available to be used to provide the

symbolic derivative, if desired, allowing students facilities to

verify their answers and to further explore the rules they are

seeking to establish.

The module concludes with probes related to understanding of

functions:
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T1: How would you describe the idea of function now? What

examples might you use?

T2: How might computer approaches be used in class by

students learning about functions?

S1: Do you feel that you understand functions any better now?

How would you describe an equation to a friend?

S2: Do you feel that you understand functions any better now?

Please explain.

• Something to Think About... presents a collection of problems

related to functions which are intended to provide the impetus

for student exploration and real-world grounding and practical

applications for many of the ideas and processes they have

encountered. Although not all of the problems require the use of

computer tools, all are inspired by the technology and encourage

careful thought about the central concepts of algebra (especially

function, domain and range). Some problems have been chosen

to highlight the limitations as well as the advantages of computer

software (for example, Figure 4.11 displays an equation for which

the graphical representation provides very limited (and indeed,

misleading) information, while the table of values displays the

solutions immediately).

Initial probes focused again upon understanding of functions:

T1: As a teacher, what aspects of functions and variables to you

consider to be most important?

T2: As a teacher, how would you explain the idea of variable?

What examples would you give?
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S1: What things do you think are most important for success in

solving problems in mathematics?

S2: What things do you think are most important for success in

working with functions and variables?

Figure 4.11: Something to Think About...

• Exploring CHAOS was included as an extension module which

again provided impetus for mathematical investigation and open-

ended problem solving. Attitudes of both students and student

teachers towards such material were considered significant in

the context of the use of software which demanded such

exploration. Initial probes were:

T1: As a teacher, what value (if any) do you see in introducing

topics such as Chaos to students?
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T2: What do you understand by Chaos Theory? Is it relevant to

your students?

S1: Do you think that there is any 'new mathematics'?

S2: What things about Chaos do you find most interesting? What

things do you think are important?

• Review of Skills consisted of six ten-question quizzes which

reviewed (in multiple-choice format) basic skills from Year 7

(Beginning Algebra), Year 8 (Equations), Years 9/10 (Basic

Algebra), Year 11/12 (Senior Algebra Review) and challenge

problems (Stress Test). The tests were structured in such a way

that students could make several attempts, if desired. The first

attempt was valued at 2 points, and no computer tools were

available. This was intended to simulate the more usual

mathematics learning situation, where computer tools are

unavailable and students must rely upon their own mastery of

algebraic skills. If their attempt was unsuccessful, the tools

became available, and the value was reduced by 1. Subsequent

attempts were valued at zero, placing some emphasis upon

obtaining a correct answer on at least the second attempt. In this

way it was anticipated that students might be encouraged to

make use of the software tools to at least verify their responses

on this second attempt in order to avoid a zero score. Although

linked to the first two modules, the review tests could be

attempted at any time and in any order.

Initial probes were included for this review:

T1: As a teacher, what skills and understandings are essential

for success in algebra?
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T2: What skills and understandings do you consider essential for

students to be successful in solving equations?

S1: What three things do you think are most important for

success in mathematics?

S2: What three things do you think are most important for

success in algebra?

Supplementary to the algebraic learning context was a series of

“research questions”, designed to provide additional data regarding the

understandings, attitudes and beliefs of the participants concerning

both mathematical and pedagogical aspects of algebra. At the

commencement of each session, users were prompted as to whether

they had “answered the research questions yet”. They were free to

answer “yes” if desired and move directly into the program. If the

negative response was chosen, they were presented with a menu of six

parts (see Figure 4.12). Not all participants answered all parts; rather

these were seen as supplementing the core data derived from the

interaction of the individual with the software tools. The research

questions were intended to provide a “profile” of each user which might

assist in seeking to better understand their responses, and which might

provide some degree of comparative data in relation to other

participants.
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Figure 4.12: The Research Questions

Pedagogical Data about Algebra Learning

Data related to pedagogical aspects of algebra learning was generated

specifically by three of the research components. The first, Thinking

about algebra lessons, consisted of three open-ended questions, which

the user was encouraged to answer “as clearly and as completely as

possible”. The first asked for a description of “a ‘typical’ mathematics

lesson”; the second asked the participant to “think back to a time that

you experienced a really effective mathematics lesson”. They were then

required to indicate those factors which they believed helped to make

the lesson so successful. Finally, the user was requested to describe “in

what ways computers might be used to make mathematics learning more

effective”.
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Figure 4.13: Thinking about algebra lessons

Twin central themes recurred with regard to the data collected on

pedagogical aspects of algebraic thinking throughout this study, and

these are encapsulated in this first section. The notion of a “typical

mathematics lesson” was considered important in helping to identify

commonalities and differences across the participants with regard to

their experiences of mathematics learning. Beliefs regarding the nature

of a “successful” or “effective” learning experience were also considered

critical in seeking to understand perceptions of the role of computers in

the learning process and beliefs regarding algebra learning in general.

The recurrence of these twin themes throughout the data collection

process was deliberate, seeking to illuminate these concerns from

different angles and so to provide some degree of triangulation from

which to make judgements concerning the validity of the different

responses.
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The section entitled Thinking about learning algebra consisted of the

twenty-eight multiple-choice questions of the Constructivist Learning

Environment Scale (Preferred form) (CLES) (Taylor and Fraser, 1987).

Development of this scale had led to the identification of four factors

associated with constructivist learning principles as defined by the

authors - autonomy, negotiation, prior knowledge and student-

centredness. The questionnaire adopted for this study consisted of

seven questions (both positive and negative) for each of these four

factors (see Appendix B for a listing of the items). As described by the

authors (Taylor and Fraser, 1987),

The Autonomy scale measures perceptions of the extent to which there are
opportunities for students to exercise meaningful and deliberate control over
their learning activities, and think independently of the teacher and other
students. The Prior Knowledge scale measures perceptions of the extent to
which there are opportunities for students meaningfully to integrate their prior
knowledge and experiences with their newly constructed knowledge. The
Negotiation scale measures perceptions of the extent to which there are
opportunities for students to interact, negotiate meaning and build consensus.
The Student-Centredness scale measures perceptions of the extent to which
there are opportunities for students to experience learning as a process of
creating and resolving personally problematic experiences. (p. 2)

The version of the CLES scale adapted for this study consisted of

twenty-eight items in a five-point Likert format (Very Often, Often,

Sometimes, Seldom and Never). The unbalanced nature of the scale

responses (“very often” should be “always” in order to balance the

opposite response, “never”) follows the design as specified by the

authors. The absolute positive response was apparently considered too

extreme and unlikely to be chosen by students. Although the scale was

developed in two forms - Preferred (in which subjects indicated

responses consistent with their preferred mode of learning) and

Perceived (in which responses related to the way in which they actually

perceived their current mathematics learning situation), only the
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Preferred version was used. While development of the scale appeared

statistically rigorous, it was not intended to be used for statistical

analysis in this context, but rather to provide further meaningful data

for the participant profile discussed above. It was considered an

appropriate instrument for this purpose since it offered quite specific

and consistent information regarding participants’ preferences and

beliefs regarding algebra learning in a format which was well-suited to

the computer-based data collection mode adopted.

Figure 4.14: CLES Scale item (Negative Autonomy)

The third research section directly related to pedagogical thinking was

called Images of Teaching, and consisted of ten cards, each displaying

a teaching role or metaphor, beginning with the stem “Teacher as...”.
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 The metaphors initially chosen were: “Teacher as...”

Entertainer

Police Officer

Gardener

Captain of the Ship

Travel Agent

Social Secretary

Tour Guide

Administrator

“The Boss”

?

Space was provided for participants to enter one or more metaphors of

their own choosing at the end. Participants were invited to describe

what each metaphor meant to them and then, after viewing all cards, to

associate each with more or less successful teaching. Research on the

potential of metaphors as tools for understanding and improving

teaching practice (Tobin, 1990, Ritchie and Russell, 1991) suggests that

they might also be effective means of making explicit aspects of the craft

knowledge of teaching which is otherwise difficult to articulate. For both

students and preservice teachers, perceptions of the role of the teacher

(especially with regard to effective lessons) would appear to be critical in

the present context and provides another valuable perspective on

pedagogical thinking related to algebra learning.

Mathematical Thinking about Algebra Learning

Difficulties associated with articulating tacit knowledge are not

restricted to the craft knowledge of teaching. In the present context,

they apply equally to thinking about algebra. Getting beyond the
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question “What do you think algebra is?” and, further, getting “behind”

the answers given to tease out greater detail regarding both the

concepts which comprise this complex notion and, more importantly,

the relationships between these concepts, proved to be a critical

consideration in the research design. The use of cards displaying visual

images of algebraic representations as described by Stein, Baxter and

Leinhardt (1990) appeared to offer an appropriate technique for eliciting

deep aspects of algebraic thinking, especially within a computer-based

environment. Ten images were created on cards within HyperCard

displaying graphs, tables of values, algebraic expressions and equations

and symbols related to algebra. Several were deliberately linked (e.g. the

expression (x - 1)(x + 1) and a table of values displaying the rule y = x2

- 1). Functions and non-functions were included in both symbolic and

graphical forms. Within the ten cards, there was the possibility to go

beyond a “surface grouping” of “graphs with graphs”, “equations with

equations”, and so on. As with Images of Teaching, Images of Algebra

invited participants to describe each card in turn, saying what each

meant to them and then, after viewing them all, to group them in as

many different ways as they could. This grouping was achieved on the

computer by having the user enter a “new group” name, and then

simply click on the small image of each card which belongs in that

group (see Figure 4.15).

The use of visual imagery as a prompt to more detailed and rich

description of complex concepts such as “algebra” appears to offer a

powerful means for accessing and making explicit aspects of individual

thinking. Participants at all levels asked to describe “What is algebra?”

or “What does algebra mean to you?” were generally found to be

extremely limited in their responses; putting complex concepts into
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words appears to impose quite significant demands - demands which

appeared to be lessened when responses were visual and tactile, rather

than linguistic.

Figure 4.15: Grouping Images of Algebra

As a means of probing even further into student understanding of

algebra, the Images of Algebra section was (for some participants)

extended and enhanced using a Repertory Grid approach, or RepGrid.

Based upon Kelly’s (1955) Personal Construct Theory, the Repertory

Grid was developed as a technique for eliciting, not just the components

of individuals’ thinking about complex concepts, but aspects of the

relationships between these components. It has been especially popular

as a tool for investigating teacher and student thinking in educational

research, offering an attractive blend of data which is both detailed and

idiosyncratic in its reflection of individual responses, while at the same
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time potentially generalisable and amenable to statistical analysis

(Solas, 1993, p. 209).

A common format for RepGrid analysis involves deriving a series of

statements or prompts related to the particular construct in question

(e.g. “good teaching”), then presenting these three at a time (randomly

selected) and having the participant describe “In what way are two of

these alike, and different to the third”. This forced discrimination

generates a new series of constructs which are unique to the individual,

usually in the participant’s own words. Finally, these constructs may be

applied back to the original prompts, where the participant commonly

uses a five-point Likert format to describe the extent to which each of

the constructs relates to the original statement. The resulting matrix is

amenable to statistical analysis, if desired.

In this study, the ten “images of algebra” were presented three at a

time, and participants were asked to indicate by clicking which was

perceived to be the “odd one out”, and then give a reason for this choice.

For several of the student participants, the reasons were analysed to

derive a number of common words or phrases (such as “equation”,

“function” or “graph”). These were then applied two at a time to each of

the ten images as the extremes of a bipolar continuum. At each card,

the participant was asked to decide whether the image shown was more

like one or the other, had elements of both, or was like neither. In this

way, a very detailed analysis of an individual’s thinking about algebra

was possible. Because the process was extremely time-consuming, only

a small number of students engaged in this section.
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Figure 4.16: RepGrid card for Images of Algebra

Finally, a simple attitude scale was presented (Appendix C). In this way,

a measure of both attitude towards algebra was possible for the various

participants, both at the commencement of their involvement in the

project, and at various points throughout.

The Participants

This study of learning to use new tools begins as a case study of the

teacher/researcher’s interactions with a single student (labelled below

as S4 and referred to subsequently as Stephen) within a tool-rich

algebraic learning context. The encounters occurred within individual

tutorial situations over a period of almost two years, with some thirty-

six hours of interactions recorded and analysed. As the study

progressed, it grew to include five other student informants and two
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groups of preservice teachers as the cyclic nature of the grounded

theory method demanded greater variability within the data, and new

research questions and priorities became apparent.

In addition to the teacher/researcher, the study then involves three

groups of participants engaged in the use of mathematical software

tools. Each provides a unique perspective, intended to illuminate

different aspects of the research problem. With regard to the twin poles

of mathematical and pedagogical thinking, each group offers a different

emphasis. The secondary students, in their dealings with the software

tools, are concerned primarily with the mathematical demands of the

learning contexts, and only incidentally with pedagogical aspects. The

student teachers might be expected to be more interested in the

pedagogical elements and implications of the experience, although one

group is deliberately influenced to consider mathematical aspects. The

sample groups, then, potentially offer the means of comparing and

contrasting aspects of software use across different situations. Such a

situation allows for considerations of variance within the study,

increasing the richness of the theoretical description.

The secondary students

The student group for this study comprised six secondary students who

engaged in use of a range of mathematical software within individual

tutorial situations over periods ranging from two months to two years.

Table 4.1 displays the characteristics of each of the individuals

(including a rating of “ability level” from 1 (very high) to 5 (very low)

derived from their school gradings and associated with their

mathematics course for the senior students). The chosen group may be
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broadly viewed as providing a cross-sectional sample across gender,

year level and mathematical competence. The principal informant,

Stephen, is highlighted.

Table 4.1

The student participants

Code Name Sex Year Time

(hours)

Ability

Level

S1 Andrea Female 11 15 2 (3 Unit)

S2 Ben Male 12 20 3 (2 Unit)

S3 Jane Female 10 12 3

S4 Stephen Male 11-12 36 2 (3 Unit)

S5 Tony Male 8-9 10 2

S6 Patrick Male 7 6 2

The research sessions occurred, on average, for one hour per week

during the school term. In addition to the gathering of data, the

researcher made his services available as tutor for those students who

desired help with their associated studies, and this aspect of the

professional relationship between researcher and student was

significant in influencing the nature of the data collection process. In

order to create as realistic a learning situation as possible, this tutoring

role was generally allowed to dominate the interactions. Activities solely

related to the gathering of research data were minimised, and

consequently the majority of data collected was naturalistic. These

same considerations served to preclude the use of a tape recorder or

video camera as means of gathering data, as such methods were

considered too intrusive in what was an essentially private learning

Page 143



Learning to Use New Tools The Research Design

situation. Students needed to feel free to make mistakes and to display

uncertainty, and such record-keeping was felt to seriously diminish

such freedom.

The use of the computer as a means of recording comments and

mathematical interactions proved to be an ideal compromise between

the research demands and those associated with the mathematics

learning situation. Students indicated a willingness to engage in this

form of data collection, in full knowledge that aspects of the learning

process were being recorded. Written responses to probes and prompts

within the materials, and comments made at various stages in the

interactions, were accepted as overt and deliberate records, which

students had the option to pass over, or to answer with a degree of care

and consideration denied them by other more obtrusive means.

The data collection process involving the secondary students in

interactions with the various computer software tools blends elements

of clinical interview procedures with participant observation. At all

times, the researcher was an integral part of the process, driving and

directing both the mathematics learning situation and the research

component. This data collection process is considered in greater detail

in subsequent sections.
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The preservice teachers

 Two groups of preservice teachers (hereafter described as Group A and

Group B) provided data for the study. Both groups were in the final

stages of four-year Bachelor of Education degrees at different

institutions. They engaged in the programme as part of their

assessment for units of study centred on the role of technology in the

teaching of high school algebra. Group A consisted of eighteen students

of whom twelve were female; Group B was made up of eight students, of

whom only one was male. The strong weighting of females in both

groups appears to be most closely related to the nature of the degree

programme as a four-year specialist Education degree, in contrast to

the other available option - the Diploma in Education, a twelve month

post-graduate programme, completed after an initial generalist degree

(usually Arts or Science). The latter option allows greater flexibility in

career choice than the Bachelor of Education, and the gender balance

in the Diploma programme was reported to be more equally distributed.

It appears likely that girls were more willing than boys to make a firm

commitment to the teaching profession by choosing the specialist

degree course; the alternative allowed participants to “keep their

options open”.

Group A: The unit studied by Group A required two hours per week

class attendance over two semesters (a full academic year). The

outcomes of the unit, as specified in the course outline, indicated that

students would:

(i) become familiar with developments in technology appropriate for

mathematics teachers.

(ii) investigate outcome based assessment.

(iii) become familiar with new changing policies in school mathematics.
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(iv) compare different philosophical viewpoints of knowledge and learning.

(v) become familiar with topics in the senior New South Wales syllabus.

The coverage of the role of technology in algebra learning, then, was

situated within a much broader context. Students were presented with

two two-hour demonstrations of available algebra software tools

(Theorist Student Edition, MathMaster 2.21 and xFunctions 2.2) and were

introduced to the Exploring Algebra package as a means by which they

might investigate the use of the tools within a variety of algebra learning

contexts. The remainder of their experience was then dictated by the

assessment requirements for the unit.

The project on “Algebra in Technology” was one of three major

assessment tasks specified for the unit (the other two being a Reflective

Journal and a task related to outcomes based assessment), and was

allocated 30% of the assessment total for the course. As described in

the subject outline (Appendix D), students were required to “work

through computer instructional modules and reflect on the teaching

and learning of algebra in the context of computer assisted learning”.

Three specialisations were made available, for junior, middle or senior

algebra. The majority of students chose the junior option, probably

because this was the emphasis of the demonstration of the tools. The

assessment weighting favoured the pedagogic aspects of the task, with

only 10% of the possible 30% allocated to the open-ended use of the

software tools. This had the result that the participants focused upon

issues of teaching and learning, and their exploratory use of the tools

was minimal. It should be noted, too, that although Theorist Student

Edition and MathMaster 2.21 were demonstrated, they were unavailable
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to the students working though the modules due to copyright

restrictions upon their use (these restrictions were later relaxed for

MathMaster by the author, allowing it to be used freely in subsequent

data collection activities).

After the class sessions introducing the software and materials,

students were allocated six weeks in which to complete the assessment

tasks associated with the project. They were free to access the materials

on the available computers at times of their own choosing.

Group B: The second group of preservice teachers participated in a

twelve hour unit specifically on the role of technology in algebra, taught

by the researcher over four three-hour sessions. The course outline and

assessment requirements are included in Appendix D, and deliberately

favoured an exploratory approach, emphasising use of the tools within

problem-based situations in addition to instructional content-based

activities. Computer algebra facilities were available for this group (in

the form of MathMaster 2.21) in addition to the modules of Exploring

Algebra and the multiple representation tool, xFunctions 2.2.

References were provided to accompany each week’s theme, and

students were instructed to complete the assessment requirements at

times convenient to them, over the duration of the unit and the four

weeks following. Each of the five explorations specified in Assessment

Task 1 was allocated a weighting of 12%; the other two modules were

weighted at 20% each. The weighting deliberately stresses the free

exploration component of the task, and encouraged students to engage

actively with both the tools and the instructional materials.
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As with the secondary students, ethical considerations constrained the

gathering of research data in both preservice teacher groups. Once

again, the priority for both groups was the learning experience, and

tasks which served only a research function were largely inappropriate.

A number of the students in Group A did, however, choose to work

through some of the Research Questions available within the materials,

providing data revealing of several aspects of their thinking about

mathematical and pedagogical aspects of algebra. This group was,

however, restricted in access to computer algebra software, since

multiple versions of the commercial tools were not available and, at this

stage, permission had not been granted to use the shareware program,

MathMaster 2.21 (such permission was subsequently granted by its

author). Group B had no such software limitations and had ready

access to both MathMaster and CoCoA which both offer basic algebra

capabilities.

Each group, then, offers particular strengths in terms of the research

data provided. Group A offers rich description of the pedagogical

aspects of algebra learning, but is less strong in the mathematical

aspects. Group B, on the other hand, engaged more vigorously in tool-

based mathematical exploration, but offered less in the way of

pedagogical data. Together, the groups complement each other well and

provide detailed data regarding the ways in which these preservice

teachers chose to engage in the use of mathematical software within an

algebra learning context.
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Analysis of Data

The varied and extensive data derived from this computer-based design

were, in almost all cases, in text-file format, ready to be read directly

into NUD•IST (Richards and Richards, 1993), the qualitative analysis

software tool chosen for analysis. The use of computers as tools for

qualitative data analysis is now widespread, since they provide unique

and powerful means of working with relatively large amounts of textual

data (and, increasingly, other formats including graphical, audio and

video). NUD•IST is unique in providing a wide range of search and

retrieval functions which may be applied, not only to the data itself

(referred to in the program as the Document System), but also to the

categories created by the researcher which are organised to form what

is termed the Index System. The program encourages and rewards the

creation of a two-dimensional tree, with each new category becoming a

node on the tree which must be located in relation to other nodes

already in existence.

This formal structure of the Index System appears highly compatible

with the Grounded Theory approach, which utilises as its main tool for

data analysis what is termed the constant comparative method (Strauss

and Corbin, 1991, p. 62). As each new category is created it must be

compared and contrasted with existing categories - a feature

deliberately encouraged by NUD•IST. The Index System itself is in a

constant state of flux throughout the data analysis process (which

begins with the first collection of data and continues throughout the

period of the project). It is intended that the Index System reflect the

state of the researcher’s organisation and conceptualisation of both the

data and the abstract categories which arise from it.
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In the present study, categorisation of the data began early in the data

collection process with the identification of concepts arising directly

from the data. This can rapidly lead to a proliferation of categories -

over ninety categories emerged quite rapidly from the first coding

process using a software package which did not support the tree-

structure of NUD•IST. A significant advantage of this structured

approach is that it actually helps to minimise the growth of new codes,

since each is compared and contrasted and situated in relation to

others.

An early form of Index System developed for this study included codes

for the several theoretical positions outlined in the Introduction -

Constructivism, the SOLO Taxonomy, van Hiele and Vygotskian

categories. This approach was later rejected as incompatible with a

Grounded Theory approach, since the theoretical structure must arise

from the data, rather than being imposed upon it. This is significantly

different from more traditional research approaches which are based

upon theory verification rather than theory generation, as is proposed

here. Alternative theoretical positions are more important at the end of

the analytic process than the beginning. They serve then to support and

perhaps to generalise the theoretical position which has been

developed.

As these concepts are organised and refined, common themes are

recognised and serve as the basis for new concepts, emerging at higher

levels of abstraction and becoming increasingly theoretical (a process

aided significantly by the keeping of journal notes and memos as

reflective devices which assist in the movement to levels of increasing
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abstraction from the data). The resultant grounded theory is derived

from the data by a cyclic process of organisation -> abstraction ->

theorising -> verification -> refinement. These last stages of verification

and refinement return the researcher to the data once again to reassess

the categories which are contributing to the emergent theory. The data

collection process itself in the later stages will also be driven by the

theoretical perspective which is being developed and, increasingly, the

verification stage will involve both a return to existing data and the

gathering of more focused sources of information.

Strengths and Limitations of the Research Design

This study is cognitive and naturalistic in nature, seeking to elicit

aspects of mathematical and pedagogical thinking by individuals

learning algebra in a tool-based context. Since thinking itself is not

open to scrutiny, it must be made explicit through consideration of the

twin elements of action and language. The research instrument was

designed to capture as much as possible of these elements within a

particular algebra learning context. The attempt to maintain such a

context in as naturalistic a mode as possible imposed certain quite

significant limitations upon the design, while at the same time offering

the potential for the collection of data which accurately and extensively

reflects the concerns and realities for those engaged in the processes of

algebra learning.

Particular limitations of the research design may be recognised as

deriving from the following factors:

• participant responses

• sample limitations
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• generalisability of results

• researcher bias, and

• artificiality of the context.

All but the last of these are common to most qualitative research

studies and are frequently cited as criticisms of the Interpretivist

paradigm. Any study which purports to study thinking must confront

the most obvious hurdle - thought processes themselves are

inaccessible and must be studied by inference. In particular, the

assumption that language provides an adequate representation of

thought may not be brushed over lightly. It was precisely this problem

which Vygotsky confronted in his classic text, Thought and Word (1962).

While denying that one is in any way an accurate mirror of the other,

his fundamental thesis revolved around the links between thinking and

word meaning (Vygotsky, 1962).

The meaning of a word represents such a close amalgam of thought and
language that it is hard to tell whether it is a phenomenon of speech or a
phenomenon of thought. (p. 120)

Such has been the approach adopted in the current study. The

responses elicited from the participants are seen as providing critical

insights into their thinking. The more varied the response (verbal,

visual, tactile) the more rigorous the connection. In the final analysis,

however, we make one unavoidable assumption - that our informants

are speaking the truth, providing an accurate description of their own

understandings and perceptions. The relationship of the students with

the researcher, built up over an extended period, coupled with the face-

to-face contact of the tutorial situation, serve to alleviate the concerns

for this group. The preservice teachers, however, have little or no

relationship with the researcher, nor was anyone watching over their
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shoulders as they interacted with the software and responded to the

prompts and probes - how then can their responses be trusted?

Two considerations are relevant here. The first was the nature of the

research process as a significant part of their course assessment

(occurring in the latter part of their studies when successful completion

must hold a high priority). The second is the nature of the responses -

these varied from minimal and obviously hasty answers from some, to

detailed and extended tracts from others. Since the research process

was a relatively time-consuming one for these students, it is assumed

that those who took the time to provide lengthy and considered

responses were being accurate in these. For this reason, six preservice

teachers from Group A (four female, two male) who provided the most

detailed responses and completed a significant part of the

supplementary research questions were chosen as the principal

informants. While the remaining twelve students provided useful

comparative data, the emphasis in the analysis lies with the chosen six.

Similarly, of the eight students in Group B, two who provided the least

detail were excluded from the primary informant group.

This leads to the second recognised limitation of the study, the

limitations of the sample. The absence of a third obvious group of

participants - practising teachers - was a deliberate choice made late in

the research process. Although their insights and perceptions would

have provided valuable data, it was decided that the focus should be

limited to algebra learning situations. If the results are to inform our

understanding of the role of computers in mathematics learning and so

to improve teaching practice, then we must begin by understanding

how students learn with technology; only then can we begin to explore
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how teachers may best teach with it. The inclusion of preservice

teachers was considered appropriate, since they, like high school

students, are engaged in the learning of algebra, although with a

different emphasis.

While the various participants chosen represent cross-sectional

groupings which add a significant degree of variability to the data, they

can in no way be considered representative of students or preservice

teachers in general. As a case study, however, their responses provide

insights and perceptions valid for themselves which in turn may serve

to illuminate our understanding of others in algebra learning situations.

Generalisability of results, then, lies in the eye of the beholder. The

detail, variability and accuracy of the data serve to inform others who

may then seek to discover the extent to which the findings apply to their

own situation. A good grounded theory remains just that - a theory

which describes and informs by the systematic and insightful way in

which it was derived from a particular data set, and then invites others

to provide their own experiences which may support or provide counter-

examples. The latter, of course, serve a vital role in developing any

theoretical position.

Grounded theory demands a specific recognition of the stance of the

researcher, known as “bracketing”. Within qualitative research design,

the researcher is part of the phenomenon being studied and must be

aware of the values and perceptions which this inside position brings to

the enterprise.

If such bracketing is not done, the scientific enterprise collapses, and what the
sociologist then believes to perceive is nothing but a mirror image of his own
hopes and fears, wishes, resentments or other psychic needs; what he will then
not perceive is anything that can reasonably be called social reality. (Berger and
Kellner, 1981, in Hutchinson, 1988, p. 130)

Page 154



Learning to Use New Tools The Research Design

Bracketing in this study is achieved through journal-keeping and

research memos, kept throughout the course of the project and,

specifically, through the researcher himself completing each of the

Research Questions described above (providing a detailed profile), along

with several open-ended mathematical tasks using available tools.

The research instrument itself provides perhaps the greatest limitation

and at the same time the greatest strength of the research design.

Removed as it is from the most common algebra learning mode - the

mathematics classroom - it offers instead a focus upon the individual

interacting with both mathematics and technology. While in no way

denying the importance of social interaction in the learning processes,

such a restriction potentially offers a clearer view of the issues in

question. While the instructional modules created for this task may be

imperfect in their realisation of the ideals of algebra learning emerging

from research, they serve adequately as a starting point, or

springboard, by which users may be directed and encouraged in their

use of software. It is the software use which is the focus, not the nature

of the algebraic environment. Further, the inclusion of open-ended

problems is likely to be far more revealing of strategies of software use

than the limited instructional sequences provided.

Specific strengths of the research design may be recognised in relation

to the following factors:

• Immediacy

• Accuracy

• Minimal obtrusiveness

• Context

• Reliability and Portability
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Within the context of the limitations outlined above, the computer-

based learning and research environment developed for this study

appears to offer certain clear advantages over alternative designs. Since

the user is actually involved in an algebraic learning situation when

prompted for responses and descriptions, the immediacy of the design

potentially offers increased accuracy which may be less certain within,

for example, stimulated recall models. These assume that certain

prompts (especially audio and video recordings) will inspire accurate

and detailed recollection of the thinking which occurred previously. The

model developed for this study accurately captures the flow of

interaction which is the principal object of study.

At the same time, the research instrument is designed not only to

capture the responses to verbal prompts, but to monitor unobtrusively

the physical interactions of individual with computer - which options

are chosen, which buttons are pushed, the time taken at each card. All

are accurately recorded to provide a detailed session record. In this

way, the design is as unobtrusive as is possible within a legitimate

learning situation, and certainly far more so than video and audio

recording devices which intrude significantly upon the confidentiality of

the learning experience.

As stated previously, the software tools under consideration in this

study are always used within a particular learning context. In addition

to providing instructional models developed from the results of

research, the design offers an open-ended environment to which the

learner may bring problems and queries of their own. This proved to be

a most valuable option for the secondary students in particular, who

frequently used the available utilities in a problem-based rather than
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instructional situation. Senior students especially preferred this mode

in preparation for assessment tasks and examinations.

Possibly the most valuable feature of the research instrument lies in its

portability. To a large extent, it operates independently of the researcher

and offers the attractive option of being used at any time convenient to

the participant. More importantly, it offers a level of objectivity in terms

of the data collected which is more often associated with surveys and

questionnaires, while retaining the flexibility and open-endedness of an

informant interview.

The research design, then, offers a model of data collection and analysis

which is sufficiently dense, systematic, valid and reliable to serve as a

basis for the development of the grounded theory proposed.
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Five

Laying out the Pieces:
An Analytical Overview

In its early stages, the development of a grounded theory is analogous

to the piecing together of a complex jigsaw puzzle. If the task is to be

approached systematically, then it will begin with laying out the pieces,

allowing them to be identified and initially sorted. In grounded theory

analysis, this stage is called open coding, and involves the classification

of the research records using codes or categories, largely arising from

the data. These categories are akin to the pieces of the puzzle.

After laying them out, each piece must be studied in terms of its

features, such as colour and shape. This relates to the second stage of

analysis, axial coding, by which the individual categories are examined

in terms of their properties and dimensions. Later, they will be sorted

and placed in relationship to the other pieces, and the building of the

grounded theory commences in earnest. Imagine now that having layed

out, examined, sorted and eventually placed the individual pieces to

form a coherent whole, that this whole becomes just a piece in a larger

puzzle. This analogy gives some indication of the true nature of a

grounded theory analysis, since it will rarely occur on a single level of

complexity. Rather, it will spiral outwards as the components are

examined, sorted and their nature teased out, and then they become
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parts of a larger puzzle which will eventually provide a rich, dense and

descriptive theory of the phenomenon under consideration.

The purpose of this chapter (and the three following chapters) is to

provide an analytical overview of the major categories which arose from

the early “fracturing” of the data. It encompasses the two initial phases

of analysis, open and axial codings. We are at the first stage of the

process of building the jigsaw puzzle which will become a grounded

theory of mathematical software use and by which this teacher and

others might better learn to use these new tools. Prior to detailing the

coding categories, however, it is relevant at this point to outline certain

fundamental assumptions and perspectives which the researcher

initially brought to the study, and which clearly influence the analysis

which follows. Most particularly, these relate to beliefs and perceptions

regarding mathematical and pedagogical thinking (the subjects of

Chapters Six and Seven) and the role of mathematical software tools in

the processes of mathematics teaching and learning (Chapter Eight).

An Interactive Model

Both teachers and their students engage in pedagogical and

mathematical thinking, producing four identifiable domains when

applied to learning situations. In the context of the present study of the

use of advanced mathematical software by teachers and students, it is

the links between these four domains of thinking which are seen to be

of primary concern, providing an element of interactivity which is

perceived as central to describing the processes of teaching and

learning.
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Figure 5.1: An Interactive Model

Those links shown in heavy print indicate traditional sources of focus

in mathematics learning. Those in lighter print have been less

emphasised and often less recognised. Each is considered below.

In the mathematical teaching/learning process, the central link is that

between teacher pedagogical thinking and student mathematical

thinking. This link is critical, since the primary purpose of teachers’

pedagogical thinking is to directly influence the mathematical thinking

of their students. Also of primary importance, teacher mathematical

thinking is likely, through modelling and example, to indirectly

influence student mathematical thinking. In the same way, teacher

pedagogical thinking may, through modelling and example, influence

student pedagogical thinking (particularly those features of the
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instructional environment which students associate with more and less

effective learning).

The links from students to teacher are perhaps less clear, dependent as

they are upon the awareness by the teacher of the students’ thinking,

and the willingness to respond to it. Thus, through reflection and

evaluation by teachers, student mathematical thinking may be

expected to influence the pedagogical thinking of their teachers. To a

less clear extent, student judgements of effective method and

instruction may also influence the pedagogical thinking of their

teachers.

Figure 5.2: An Interactive Model of Mathematical and

Pedagogical Thinking by Teachers and Students
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An Interactive Model of Mathematical and Pedagogical 

Thinking by Teachers and Students in Algebra Learning
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The links between teacher mathematical thinking and pedagogical

thinking have been the focus for considerable research activity (such as

that by Even, 1990, 1993, Leinhardt, Zaslavsky and Stein, 1990, and

Stein, Baxter and Leinhardt, 1990, in the area of “functions” alone)

since Shulman’s call in 1986 to recognise the “missing paradigm” of

teacher knowledge, “subject content knowledge”. At present, however,

the link is still problematic, and deserving of continued study. Perhaps

even more interesting may be links between the pedagogical thinking of

teachers and their mathematical thinking. Teachers in general appear

not to “think like” mathematicians; they think like mathematics

teachers. In what ways does this affect their understanding and

practice of mathematics? In the present study, it is proposed to make

such links explicit through studies of the responses of teacher

education students who have completed the mathematics content part

of their course, but not yet studied aspects of pedagogy. Such

responses (involving preferred images and levels of understanding of

algebraic concepts, perceptions of effective instruction and the roles of

teachers in algebra learning) will be compared and contrasted with

those of secondary students.

Finally, the distinction between the pedagogical and mathematical

thinking of students in schools is less clear than that for their teachers,

since students are unlikely to have perceptions of mathematics beyond

their classroom experiences. The two domains are certainly linked

closely; although the link is unclear, each is likely to influence

perceptions of the effectiveness of the other.

In seeking to describe and make explicit the use of mathematical

software by individuals learning algebra, and its consequent effects
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upon their thinking, the research inquiry then must focus upon these

four domains and the interactive links between them.

The Influence of Mathematical Software

In many respects, the classroom presence of computer algebra tools

and other open-ended mathematical software, implies a mediating role

between teacher and students, and between the four domains of

thinking described above. It is possible to identify several possible and

likely influences of such a role, and these determine the research focus

which drives the present study (Figure 5.3).

The presence of mathematical software is likely to create a new

feedback loop for teacher reflection and evaluation, with the software

as its source. This is additional to the traditional feedback loop from

students. It will also provide a new source of feedback for students, in

addition to the traditional feedback offered by the teacher. It should

also provide a new reference point - additional to the teacher -

regarding both mathematical and pedagogical thinking. Since in many

ways, teacher and students become co-learners through the use of

such tools, this use is likely to question assumptions concerning the

superiority of teacher knowledge of both domains. The use of computer

technology in general, and mathematical software in particular,

critically confronts current content and methods for the teaching and

learning of mathematics.
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Figure 5.3: Some Possible Effects of

Advanced Mathematical Software
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The use of mathematical software provides new opportunities for

teachers to engage in mathematical thinking as distinct from

pedagogical content thinking about their discipline. It is likely, too, to

strengthen links between mathematical and pedagogical thinking by

students: The use of mathematical software provides new opportunities

for students to engage in mathematical thinking which is independent

of teacher and text, and so gives new value to mathematical creativity
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and investigation. It may serve to provide new validity for student

mathematical conjecture, and to give new credibility to student

thinking about mathematics, no longer wholly subject to the teacher.

Having made public these perceptions and beliefs, it is now possible to

approach the analysis of the data with some awareness of the

researcher’s position in constructing the initial index system. This

initial overview will be structured around the three central concerns of

the project - mathematics, pedagogy and computer use, each analysed

in terms of the components which are outlined below.

Categories of the First Level

The qualitative analysis software program, NUD•IST, encourages the

sorting of conceptual categories into logical tree structures as they arise

from the data. Each category occupies what is termed a node in the tree

which forms the index system. Beginning with a “root” node, all others

are placed in relationships which will initially reflect the cognitive

organisation of the researcher (Figure 5.4). Later, these nodes will be

moved and reorganised to better reflect the structure of the data and

the unfolding nature of the grounded theory. At this stage, however, it

suffices to examine these categories within the descriptive and largely

superficial relationships ascribed to them by the researcher, and so to

better understand the perspective and biases which he brings to the

analysis. As mentioned previously, this process of “bracketing” is

essential if the theory is to develop from the data and to be more than a

mirror of the researcher’s own views.
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Figure 5.4: Categories of the first level

1. People 2. Words 3. Actions 4. Tools 5. Content 6. Working
Categories

ROOT

Five of the six first level categories displayed in Figure 5.4 reflect the

initial analysis of the project into what were perceived as its critical

analytical components (category 6, Working Categories, provides a

functional repository for new categories as they arose from the data,

allowing their placement in relation to the others to be delayed until

later in the process. These would generally be categories which did not

fit readily into the existing structure).

Figure 5.5: Category 1: People
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3: Student 
Teachers
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Page 166



Learning to Use New Tools Laying out the Pieces: An Analytical Overview

Figure 5.6: Tools and Content Categories

5. Content

1.Beginning algebra

2. Equations

3. Graphs

4. Coordinate geometry

5. Curve sketching

6. Completing the 

square

7. Inverse functions

8. Composite functions

9. Continued fractions

10. Polynomials

11. Calculus

12. Problems

13. Review of Skills

1. Elem, Algebra
2. Elem. Trig.
3. Basic Skills
4. Beginning algebra
5. Equations
6. Curves & functions
7. General algebra
8. Senior algebra
9. Stress Test

14. Guess My Rule
15. Chaos

4. Tools

4.1 MathPalette

1. HyperGraph

2. Table of Values

3. Concrete

1. expressions

2. equations

4.2 Computer Algebra

 1. Theorist

2. MathMaster 2.21

3. Calculus T/L II

4. CoCoA

5. Derive

4.3 xFunctions 2.2

4.4 Spreadsheet

4.5 Calculator

4.6 Graphic Calculus

4.7 RURCI

The categories People, Tools and Content are purely descriptive in

nature, reflecting aspects of the physical components which make up

the study (Figures 5.5 and 5.6). These have been discussed in previous

chapters. (Note that the tool “Graphic Calculus” refers to an IBM-based

package by David Tall, A Graphic Approach to the Calculus, which was

used early in the gathering of data, and RURCI stands for Are you

Ready for Calculus?, a series of review quizzes compiled for IBM
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computers by David Lovelock, which were later adapted into the

HyperCard format of this study.)

The two remaining categories, Words and Actions, represent major units

of analysis for the data, since they are perceived as the means by which

thinking is made explicit on the parts of the participants. The ongoing

development of these groupings occupied the primary focus in the early

coding, both open and axial, and the description of each that follows

provides the greater part of the overview for this chapter. These two

nodes capture in detail the nature of the interactions which later

provide the basis for the relationships which comprise the grounded

theory. In particular, the category, Words, provides the basis for the

analysis of the three core categories - thinking about algebra, about

pedagogy and about computers, which occupy the next three chapters,

and so lay the groundwork for the subsequent theory generating

process. Consequently, it is examined here in some detail.

A Study of Words

Figure 5.7: Category 2: Words
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The initial conception of the category involved three children,

Definitions, Beliefs and Images. Definitions are seen as objective

attempts to describe concepts, as opposed to beliefs, which may be

expected to contain a subjective element, as the object is described in

relation to the person giving the description. Within a constructivist

framework there can be no definitive boundary between the two

conceptions, as all knowledge is constructed from personal meanings -

every “definition” represents a statement of personal belief. However, for

the purposes of this study, a distinction between the two is useful, and

to this end an objective/subjective distinction should suffice. The focus

question, “How would you describe algebra and the way you best learn

it?” might be considered to give rise both to a definition (“Algebra is...”)

and a statement of belief (“I best learn algebra by...”). The first is seen to

exist independently of the speaker, while the second is defined in terms

of the relationship with the speaker, and usually involves an explicit

value judgement (for example, “How do you best learn algebra?”).

Although beliefs may be “messy constructs” to examine subjectively,

“few would argue that the beliefs teachers hold influence their

perceptions and judgements, which, in turn, affect their behaviour”

(Pajares, 1992, p. 307). Nor may this influence be restricted to teachers.

Lying at the intersection of the cognitive and affective domains,

“people’s conceptions of mathematics shape the ways that they engage

in mathematical activities” (Schoenfeld, 1989, p. 338). The beliefs

individuals hold regarding mathematics, algebra, computers, learning

and teaching must be considered critical issues in the present context.
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Figure 5.8: Sub-categories of WORDS

2. Words

1. Definitions

2.1.1 Mathematics
1. Algebra
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3. Images

2.2.1. About Learning:
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1. Autonomy
2. Negotiation
3. Prior Knowledge
4. Student Centred

2.2.2 About Teaching

2.2.3 About Algebra
2.2.3.1 Success...

1. Understanding...
2. Memorising...

2.2.4 About computers

2.2.5 About computer
 algebra

2. Beliefs

2.3.1. of Algebra
1. Cards...
2. Descriptors...

2. of Teaching
Teacher as ...
2.3.2.1 Gardener
2.3.2.2 Policeman
2.3.2.3 Administrator
2.3.2.4 Entertainer
2.3.2.5 Tour Guide
2.3.2.6 Social Secret.
2.3.2.7 The Boss
2.3.2.8 OTHER....

4. Attitudes

5. Tool Use

Fun ... Work
Rules ... Puzzles
Useless ... Useful
Easy ... Difficult
Sensible ... Nonsense
Interesting ... Boring
Challenging ... Frightening

6. Confidence

If beliefs may be distinguished from definitions by their subjectivity and

their inclusion of a value dimension, then what of images? Vinner

defines a “concept definition” as “a verbal definition that accurately

explains a concept in a non-circular way” (Vinner, 1983, p. 293). While

this very “definition” is itself circular (defining a definition as a type of

definition), it offers three critical elements - a definition may be

considered to be verbal, it explains something and it should be non-

circular. It is probably the first of these which most clearly distinguishes

concept definition from concept image, which Vinner describes in terms

of one’s mental picture and the set of associated properties called up by

the concept. In SOLO terms, the concept image is ikonic: visual,

intuitive and global, while the definition is more likely to be associated

with concrete-symbolic thinking - rational, sequential and verbal. Van

Hiele’s distinction between visual and descriptive levels of thinking

applies equally.
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 These three analytical units, definition, belief and image, provide the

primary basis for analysis of the research data (Figure 5.8). Taken

together, they allow rich and detailed depiction of elements of thinking

related to both mathematics and pedagogy within a tool-rich algebraic

learning context. As the analysis of the data unfolded, however, three

additional categories arose, each of which reflected important

considerations which did not fit easily within the early codes.

Statements relating to attitudes, tool use and confidence were

considered particularly significant in the study, and were positioned

accordingly.

A Study of Actions

As illustrated in Figure 5.9, actions were categorised in terms of the

three central concerns of the study - mathematical, pedagogical and

computer-related actions. The sub-categories for each will be examined

in detail in Chapter 8.

Figure 5.9: Categories of Action

3. Actions

1. Mathematical

1.  Interpreting
1. Words
2. Symbols
3. Graphs
4. Tables
5. Results

2. Manipulating
1. Simplifying
2. Substituting
3. Solving

1. Linear
2. Inequalities
3. Quadratics
4. Nonlinear eqns
5. Simultaneous

4. Expanding
5. Factorising
6. Evaluating

3. Representing
1. Symbolically
2. Graphically
3. Numerically

2. Pedagogical

1. Depth
1. Visual
2. Analytical

2. Verify
3. Demonstrate
4. Construct

1. with Palette

2. with keyboard
5. Explore
6. Graph
7. Tabulate
8. Animate

1. Levels of Control
1. General verbal
2. Specific verbal
3. Indicates materials
4. Prepares materials
5. Demonstrates

3. Computer
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Six

Thinking about
 Algebra

Definitions of Algebra

The mathematical definitions elicited within the study centred upon

four elements - definitions of algebra itself, and of three central

constituents of algebra - variable, equation and function. The data gave

rise to an analytical feature common to all four definitions - the

distinction between form and purpose (akin to Piaget’s structure and

function). Responses identified with form were those associated with

attempts to describe the nature of algebra in terms of its constituent

parts. These included “a group of letters that may stand in place of

numbers” (S3: Jane), “algebra is many numbers but expressed as

letters” (S1: Andrea) and “algebra is an equation or rule” (S4: Stephen).

Each reflects a perception of what algebra is, as opposed to what

algebra does. This latter is associated here with a conception of

purpose, and is reflected in definitions such as “algebra is finding or

solving or using unknowns to get a correct solution, it is like putting

one number in then getting another number out to help solve the

problem” (S1: Andrea). Within both these distinctions may be found a

range of perspectives which make up the sub-categories depicted in

Figure 6.1.
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Figure 6.1: Definitions of mathematics

2 1 1
WORDS: 

Definitions:
Mathematics

1: 
Algebra

2: 
Variable

3: 
Equation

4: 
Function

1: 
Purpose:
1: Represent
2: Substitute
3: Solve
4: Communicate
5: Be useful

2: 
Form :

1:  functions
2:  variables
3:  letters
4:  numbers
5:  graphs
6:  patterns
7:  relationships
8:  rules
9:  concrete forms
10: formulas

The form or structure of algebra involved the identification of ten

different descriptors. Functions were mentioned explicitly only by the

researcher (“The principal concepts of algebra are functions and

variables - functions defining a relationship between variables which

can be expressed in various representations” (T1: SMA)) and two of the

student teachers. Both of these were in a subsidiary context to the

concept of variable (A3: “Through the use of their interpretation and

analysis skills of graphical presentations, students are in the position to

gain insights into the dynamism of functions and variables,” and A4:

“students can see how the letters can represent a function”.) The

emphasis placed upon the concept of variable in their preceding course

related to algebra teaching and learning was clear in the responses of

the Group A preservice teachers. All saw it as important that students

“develop an understanding of variable and the relationships between

variables in Algebra” (A1) and “for students to be successful in this

introductory stage of algebra learning, and in fact, all other stages, they

must develop an understanding of what a variable is” (A3). Each of the
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preservice teachers from Group A who made an attempt to define

algebra included specific and explicit mention of the central role of

understanding of variable. None of the secondary students made such

explicit reference to either functions or variables in their definitions of

algebra.

For the secondary students, the nature of algebra was defined by

letters and numbers, with less frequent references to rules, formulas

and graphs. An early interview with Jane (S3) as a Year 10 student

studying Advanced level mathematics revealed a shallow understanding

of this nature:

Interviewer: . ..This person, towards the end of the lesson, nudges

you again ... and says, “What’s algebra?” We’ve had

this one before, but how would you explain it to

someone who didn’t know?

Jane: Letters?

Interviewer: Then he says, “Letters?” Yeah, that’s what we do in

English.

Jane: Um ... numbers and letters?

Interviewer: Okay...

Jane: Um ... a group of letters that mean something,

equal something?

Interviewer: Okay, a group of letters that mean something, equal

something ... equal what? Equal numbers?

Jane: Yeah.

Interviewer: Okay, so a letter like “a” can stand for a number?

Jane: Yeah.

Interviewer: Okay, can it stand for more than one number?

Jane: Yes.

Interviewer: So it can stand for what? Two numbers?

Jane: It can stand for ... I don’t know ... anything.

Interviewer: Anything?

Jane: Any numbers.
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This transcript is revealing of the tacit nature of knowledge about

algebra. It is clearly disjointed and difficult to articulate for the student

and yet, upon probing, is essentially sound in its foundations. The

important concept of variable as representing a range of values rather

than simply a “placeholder” is present here, suggested at the end of the

transcript. It was as a consequence of this recognition of the tacit

nature of students’ knowledge about algebra that alternative ways of

gathering research data were explored, leading to the image-based

methods developed later in the study.

Table 6.1

Forms of Algebra

Forms function variable letters numbers graphs patterns relations rules concrete formulas

A1 √ √ √ √ √ √

A3 √ √ √ √ √ √ √ √

A4 √ √ √ √ √ √ √

A5 √ √ √ √

A6 √ √ √ √

S1 √ √ √ √

S2 √ √ √

S3 √ √

S4 √ √ √ √ √ √

S5 √ √

S6 √

T1 √ √ √
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Table 6.1 presents a summary of responses to the nature of algebra

which reflect a consideration of its constituent components. Several

subgroups may be discerned from these responses. Patrick (S6 - Year 7)

might best be termed pre-algebraic, his only experience of algebra at

this stage being informally, through concrete models. Jane (S3 - Year

10) and Tony (S5 - Year 8) are both limited to a unistructural

understanding of algebra, as “letters standing for numbers”. It would

appear that entry into senior mathematical study brings with it a

broader conception which commonly includes recognition of the roles of

symbolism (equations and formulas) and relationships in defining the

nature of algebra. Such an understanding, however, appears at best

multistructural, even among the preservice teachers, as their

understanding is made up of a collection of largely unrelated parts.

Understanding of the relationships between the various components of

algebra - the letters, the numbers, the graphs, the rules and formulas,

even the place of functions and variables - appeared to be largely absent

among both students and preservice teachers, at least as revealed by

the verbal definitions offered.

Five dimensions of algebraic purpose were also identified from the data.

Most common of these was the perceived function of solving, found

among all the older students (Andrea (S1), Ben (S2), Jane (S3) and

Stephen (S4)) and two student teachers (A5 and A6). These definitions

included “algebra is a form of mathematics which helps us in ways to

solve mathematical problems” (Ben), “we use algebra to find out

numbers that we do not know” (Tony), and “I believe algebra to be a

mathematical expression for finding unknowns” (A5).
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Another common perception of the purpose of algebra was its

representative function - most commonly as letters standing for

numbers (already mentioned above), but with other references to

graphs, patterns and concrete forms as serving representational

roles. Among the secondary students, there was evidence of a shift over

time, from a static view of algebra (aligned with its representative

function) to a more active view (associated especially with solving

problems). Jane’s early definition of algebra, captured in the interview

transcript above, is persistent over time (“letters and numbers”, “letters

that stand for numbers” and “algebra here means anything with letters

in it”) until finally, it includes a new component: “Algebra is a group of

numbers and letters to solve equations”. This added dimension of

purpose in addition to form appears to suggest some change in

perception over the period of the study.

Jane’s passive view of algebra may be contrasted with a more active

view, such as that consistently displayed by Stephen (S4). From his

earliest definition (“Algebra is a topic of maths which has letters and

numbers. Solve these equations [sic] and simplifying them is the main

target. Algebra is no set form and can be described on graphs or

number lines or other ways”.) Stephen clearly displayed a more

comprehensive view of algebra than that of Jane, a view that was

similarly persistent over the period of the study: “Algebra is a way of

understanding a[n] equation with an unknown value used to describe

the pattern it makes. It is useful to know how to deal with algebra so

you can know how to understand statements without knowing its

value”. Compare this early definition with later ones: “Algebra is an

equation or rule which is a guideline to answering certain types of
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equations which involve pronumerals” and “Algebra is a way of

describing a graph or equation with pronumerals and numerals”.

Stephen’s quite comprehensive definitions may be compared with those

of his peer, Ben (S2). While Stephen was attempting the higher level

Three Unit mathematics course for the Higher School Certificate, Ben

was attempting the Two Unit course. For Ben, “Algebra is a form of

mathematics which helps us in ways to solve mathematical problems.

It’s all done with formulas and visual aids - graphs, plotting in the

number plane, curves and different equations that you can graph”.

Much later, this had been refined to “Algebra is solving algebraic

problems (graphically, algebraically) where there is always an

unknown”. For Ben, algebra is about solving, whereas Stephen’s view

included a clear descriptive function as well.

Andrea (S1), too, shared this perception. Developing from her early

representative depiction, “algebra is many numbers but expressed as

letters”, her view of algebra grew over time to become far more active:

“Algebra is finding or solving or using unknowns to get a correct

solution”. Like Stephen, Andrea was attempting the higher level Three

Unit course in Year 11 at the time of the study. Their definitions

appeared to be revealing of a broader conception of algebra than that of

Ben.

As a Year 8 student, Tony (S5) might be expected to display quite

limited understanding of the nature and role of algebra. It is interesting,

then, to note that even his earliest attempt - “Algebra is where you use

letters to substitute for numbers” - a clear element of action was

evident, and such a view was labelled substitution to distinguish it
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from the passive representation form displayed by others, such as

Jane. A much later definition showed the twin elements of

representation and solution which had also categorised the

developments of the older students:

 Algebra is the use of letters in mathematics as pronumerals for numbers that
we do not know. We use algebra to find out numbers that we don’t know. An
equation is using algebra to find out the value of a pronumeral.

Although Tony was graded at this time as a middle ability student at his

school (placed in the third of five graded mathematics classes), his

responses seem indicative of a higher ability range than this. (Towards

the end of the study, Tony had actually been promoted two class levels,

suggesting that student understanding of mathematical concepts may

be a useful indicator of mathematical capabilities. At the same time, the

ability to express oneself verbally in a clear and articulate way may also

be a relevant indicator in this context, possibly independent of

mathematical ability.)

This function associated with a process of “solving” was commonly

linked to another, being useful, in which explicit recognition was made

of algebra serving some helpful role. Although the purposes of algebra

were categorised in a variety of ways already discussed, few mentioned

any application of algebra beyond its own ends. In other words, for most

participants, the purpose of algebra is to solve algebraic problems. Of

the students, Andrea noted that “we do algebra to make life easier -

without algebra we wouldn’t have half the stuff we do now, or maths”,

while Tony suggested that “it helps us in everyday life when adding stuff

up at the supermarket (a basic example) and all kinds of other ways”

(although he may well have been referring here to mathematics in
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general). Even the preservice teachers, at the end of their formal studies

of mathematics and pedagogy, were able to offer only that “algebra is a

highly useful area of mathematics that is a crucial foundation to much

of the mathematics that High School students learn” (A6) and “algebra

is important to pupils learning of mathematics. It is the basis of the

maths pupils will do in later years”. (A2).

Only one participant (A3) offered an alternative view of algebra, as a

means of communicating:

Students need to view algebra as a language, a way of saying or communicating
a rule in an abbreviated form. The use of symbolism, the abbreviated form,
incorporates the idea of generalisation.

This view hints at the potential of algebra as a mediating tool which

supports thinking and enables higher cognitive functioning in the same

way as language. It was evident nowhere else in the data, however, and

is clearly not a general perception of algebra among the participants.

The definitions of equation, variable and function were similarly

analysed into statements related to form and purpose. The sub-

categories for each are summarised below, along with those participants

from whom these categories were derived.
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Thinking about Equations

Equation is...

(1) Purpose (2) Form

• To represent: • manipulations (A1, A4)

- equality (S3, S4) • representations:

- relationship (S5) - graphical (A1, S4)

• To solve (S1) - symbolic (A4, S3, S4)

• variables (A1, S1, S5)

The familiar identification of equations with the manipulation of

symbols to produce an answer was explicitly found only among the

student teachers. For the students, an equation was more likely to be

defined in terms of graphs and symbols arranged around an equality.

While the notion of equality and the purpose of deriving an “answer”

were generally recognised properties, the means by which this answer

might be derived was notably absent from consideration. Once again,

some responses among the students were clearly unistructural (“a set

of numbers and letters that equal another set” (S3: Jane) and “when

you make a rule or relationship between numbers and pronumerals”

(S5: Tony), while others indicated thinking which was multistructural

(“An equation is a set of numbers which might contain variables - when

you put one number in, another number will come out. e.g. x + 1 = y

(two variables)” (S1: Andrea) and “an equation is a statement which

describes a line or curve which can be drawn on a graph. It includes a

group of numbers with letters and their values. You try and get the

letters (usually x and y values) to equal a number” (S4: Stephen).
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Comparison of the two responses classified as unistructural reveals

that, while both focus upon a single property, they are nonetheless

quite distinct in nature. A similar finding occurs with the second pair of

examples. In both cases, the second response illustrates a higher

cognitive level than the first. Consider, for example, the two responses

classified as unistructural. The object of focus for the first is a static

notion of equality. It views the equation as a totality and appears to

illustrate what van Hiele terms a “visual” response. The second

response, however, takes as its focus the establishment of a

relationship, an active perception quite different to the first. Similarly,

the second multistructural response is far more complex than the first.

These examples appear to support the recent developments in the SOLO

taxonomy which suggest that, within a single mode of thinking (in this

case, concrete-symbolic), there may be found several cycles of

increasing complexity, rather than the single unistructural-

multistructural-relational cycle originally proposed (Pegg, 1992).

Perhaps even more illuminating is the distinction drawn by van Hiele

between what he terms the symbol and signal characters of cognitive

objects such as geometric figures or, as in this case, equations and

algebraic symbols (van Hiele, 1986, pp. 60-61, p. 168). Initially, he

proposes, an object is recognised by its symbol character (van Hiele,

1986):

Many symbols begin their existence with an image in which the observed
properties and relations are temporarily projected. However, after the explication
of those properties and relations by an analysis or discussion, the symbol loses
the character of image, acquires a verbal content, and thus becomes more useful
for operations of thinking. (p. 61)
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Such a view is likely to be visual in nature - global, wholistic, intuitive.

Gradually, however, van Hiele submits that the symbol acquires new

properties - “the symbols act as signals” (van Hiele, 1986, p. 62). As

such, they influence the thinking of the individual in a direct and

deliberate way. As signals, they will trigger a cognitive reaction, which

may be a recognition of a complex of properties and relationships or

may even be a signal to act within a specific context.

The example of equation is an interesting case in point. When an

individual views an equation, what is actually seen? At the lowest level

(in a prealgebraic sense) an equation is simply a jumble of letters and

numbers (similar to Jane’s response above). Having acquired a symbol

character through early study of algebra, it is recognised as defining a

relationship of equality (Tony’s response). (This does not imply that

Jane was operating at a prealgebraic level, only that her response might

be seen as illustrative of such a level).

If the second pair of responses are considered, both illustrate

recognition of signal characteristics of equations. Much of the training

in early algebra is intended to produce a particular signal response in

students - an automatic triggering of the signal to act in a

predetermined sequence which will eventually result in a solution. Both

multistructural responses above display this signal nature - they

recognise that an equation is an object to be used to produce a result,

an answer. Stephen’s response, however, appears to go one step

further. His view of equation triggers not only the signal to act, but also

the recognition of other representations of equation which are indicative

of a richer network of relationships.
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What an individual sees when confronted by an equation, a function, a

graph or any of the symbolic objects associated with algebra must be

recognised as a central issue in the present study. Further insights into

such thinking are likely to arise from consideration of responses to

visual images of algebra, and it seems likely that the use of computer

tools must be considered in the context of such visual thinking.

Thinking about Variables

Variable is...

(1) Purpose (2) Form

• To represent: • pronumeral (A1,A3,A4,S1,S5)

- unknown value (S1, S4) • patterns (A1, A4, A5)

- numerical value (A2, A3, S4, S5, S6) • rule (A2, S4)

- range of values • dynamic (A2, A3, A5, S4, S5)

(A1, A3, A4, A5, A6, S4, S6) • letter (A3, S4, S6)

- lines/curves (S4)

• To solve (S4)

• To simplify (S6)

Understanding of the concept of variable has been a common focus for

studies associated with the learning of algebra (for example, Quinlan,

1992) including learning within a computer-based context (Boers,

1992). In the latter case, it was found that students with access to

computer algebra software were more likely to think of variables as

representing a range of values than as a single placeholder for an

unknown object. Such was found to be the case in the present study,

where student definitions of variable tended to be active, process-

oriented conceptions: Stephen (S4), for example, thought of variable

early in the study as “a letter used in algebra which is used to describe

certain lines or curves or to use as an unanswerable value. Most
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variables are able to be used to find answers to... They are mostly used

in rules of finding answers”. Later, however, a variable was “how you

change the answer, by using different numbers”. Andrea (S1), too,

described variables in terms of multiple unknowns: “a symbol

representing an unknown anything - usually numbers, or a degree

(angle)”.

Of considerable interest were the responses of the two junior secondary

students, Patrick (S6) and Tony (S5). Tony had not encountered

variables formally outside his use of the computer-based instructional

modules developed for the study. His active perception of variable as “a

changing amount of numbers or pronumerals in a sum, equation or

whatever” may be attributed to his computer-based learning context.

Patrick, even more so, had studied no algebra, and had worked through

the Beginning Algebra modules and used the Concrete Algebra modes

available. His comments display a firm and clear understanding of the

concept of variable within the symbolic context of algebra:

My theory about variables is that by replacing words with single letters it makes
maths easier for those who have troubles with long words. The letters stand for
amounts of things and numbers ... [A variable is] replacing amounts of substances
or numbers with single letters. It can stand for either one or many numbers.

Later, when describing the meaning of given concrete shapes to which

had been assigned letters representing their areas, Patrick noted:

‘m’ stands for any shape or form which covers five squares, m = 5.
‘s’ stands for any shape which covers six squares, s = 6.
‘a’ stands for any shape which covers two squares, a = 2.
At the moment, m = 5 but this is not a permanent fixture as it is only this at the
time. And the same rules apply for other letters.

While it is hardly surprising that the student teachers displayed

consistent and versatile understanding of the concept of variable (since

it had been an area of particular focus in their previous studies), the
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depth of understanding of the concept displayed by the secondary

students appears to derive to a great extent from the technology-rich

algebra learning environment which they had shared, within which the

attainment of an active process conception of variable had been an

explicit priority.

Thinking about Functions

Function is...

(1) Purpose (2) Form

• To represent: • graph (A1, A3, A5, S3)

- unique value (A1- 6) • rule (A1, A3, A4, A6, S4)

- non-unique value (S4) • input/output machine (A1, A6, S3, S4)

- action (A1, S3) • domain/range (A1, A2, A3, A5, A6)

• To solve (A4, S1, S4, S6) • table of values (A3)

• equation (A5, S1, S4)

• unknowns (A4, A5)

• patterns (A5, S4)

• set of numbers (A5, S3)

• relationship (S4, S6)

In addition to the concept of variable, the other area of particular focus

in the construction of the computer-based learning environment for the

study was an understanding of function. The emphasis within the

program was upon building a versatile conception of function, within

which students would have access to a relatively rich cognitive

repertoire when considering functions.
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The preservice teachers displayed a thorough knowledge and

understanding of this concept. All acknowledged the formal requirement

for uniqueness which, although specifically mentioned within the

instructional modules of the program, did not appear among the

definitions of the secondary students. The latter were more likely to

associate function with solving, arising from a perception that

functions and equations were essentially the same. This confusion is

evident in Andrea’s definition:

A function is a y value of an equation but not the y value when the equation
equals zero. You can simplify a general form equation, however, you cannot do
this to a function even though the numbers are exactly the same. e.g. f(x) =
3x^2+6x+9 is a function.

This confusion was more pronounced for Jane, who really did not know

what a function was, but suspected that it was probably very similar to

an equation:

Interviewer: Well ... in your way of thinking, would that be a ... is

that what you would think of as a function?

Jane: [Long pause] No. I don’t know. Um...

Interviewer: So you’re not sure?

Jane: No.

Interviewer: That’s fine. Do you reckon they would mean the

same thing?

Jane: Yeah.

Interviewer: So they’re both really like equations?

Jane: Yeah.

It seems likely that Jane was grasping at straws at the end of this

interview, trying to escape from a difficult situation where she was

being questioned about something which she really did not know. While

she was familiar with the term from her mathematics classes, she really

showed no understanding of its nature. She did, however, identify
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function, not only with equation, but with ordered pairs and with

plotting sets of points onto a graph, suggesting that her mental image of

function was perhaps richer than her verbal definition.

Stephen also displayed a diverse conception of function, which included

number patterns, input/output machine images and the association

with a rule or relationship. His understanding of function developed

significantly throughout the period of the study. His early thinking was

unistructural (although clearly active): “a function is [when] a value of

one is determined upon a value of another”. His response to the symbol

ƒ(x) was “the values that x can be in the equation written after it ... and

you put numbers for the x-values, and use them to work out what that

equals”. Stephen was quite definite about the distinction between

functions and equations - there was none.

Interviewer:  Alright, last question. This is the easy one. What’s

the difference, if any ... is there any difference

between functions and equations?

Stephen: No.

Interviewer:  Right. So you gave me an example of a function

before which was f of 1 equals... or f of x equals x

cubed minus whatever. Give me an example of an

equation.

Stephen: x squared minus 6x plus three ... equals zero.

Interviewer:  Alright, alright, so what’s the important thing about

an equation?

Stephen: It equals zero, and it also has to have a number ...

at the end to show where it crosses the y axis, or

whatever.

Interviewer:  Alright, so, say you’ve got ... y equals 3x plus 1. Is

that an equation? Is it a function?

Stephen: Yes, it can be.
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Interviewer:  Good. So it doesn’t have to have the ‘f(x)’ part to

make it a function? Which part would you say was

the ‘function part’, or is the whole thing the

function? y equals 3x plus one.

Stephen: Uh, the function is ... x ... the part after the y.

Interviewer:  It is what it equals?

Stephen: Mm.

Interviewer:  What about something like ‘x plus y equals two’? Is

that an equation?

Stephen: Mm.

Interviewer:  Why?

Stephen: Because it’s got both x and y values, and it equals a

number. But in a function ... it’s ... the x value plus

a number ... with y is the function out the front.

This interview is revealing of the fragility of understanding of basic

algebraic concepts, even by students considered quite mathematically

capable. Even the most common of algebraic entities, the equation,

appears to present a minefield of uncertainty for students. The

transcript suggests, too, that the physical arrangement of algebraic

forms plays a very important part in student perceptions - Stephen’s

insistence that a function requires a part “out the front” is significant,

particularly within a computer-based context where, for example, many

graph plotters require functions to be entered in a specific format

(usually “y =“ or even “ƒ(x) =“). The HyperCard plotter and table of

values utilities developed in response to these interviews deliberately

allowed functions to be entered with or without a “y =“ prefix, in order

to study student preferences and any potential effects upon student

thinking about functions.

The interview continued, attempting to further tease out Stephen’s

thinking about functions and equations:
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Interviewer:  ... So what about something like... sine of x? Now is

that a function?

Stephen: Yeah ... mm... [unsure]

Interviewer:  Wouldn’t like to put a hundred dollars on it?

Stephen: No.

Interviewer:  Alright, is it an equation?

Stephen: Yes.

Interviewer:  It is?

Stephen: Just sin(x)?

Interviewer:  Sin(x).

Stephen: No.

Interviewer:  So what would it need to be an equation?

Stephen: y equals or ... something like that.

Interviewer:  To have it equals something?

Stephen: Mm.

Interviewer:  Alright, last one. What about ... x equals 4.

Stephen: That’s an equation.

Interviewer:  Alright, is  it a function?

Stephen: uh ... no.

Interviewer:  Okay, so ... how would ... could you make it into a

function?

Stephen: Yeah, just ... x minus four equals something ... a y

or zero.

Stephen’s thinking about functions does not include the formal

uniqueness property. It corresponds instead to a general notion of a

rule or relationship which must be presented in a specific format. Thus,

“x = 4” is not a function to Stephen, not because it fails the vertical line

test, but because it is not written the right way.

Stephen’s thinking about functions became more clear during the

course of the project. Soon after the initial interview, he was able to

state that “a function is a statement or rule [in] which you can use for

any numbers to find an answer which comes out from using the

function. [For example] f(x) = x^2 - 4x + 3, f(x) = 3x - 11”. Much later,
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towards the end of the data gathering phase of the study, his thinking

had clarified even further:

A function is a way of describing a certain pattern. When substituting various
numbers into it, it will give different numbers which have been changed
according to the value of the function. f(x) = x^2 - 2, f(x) = 3x - x^2.

Stephen’s early disjoint conception had solidified to a clear and versatile

understanding of both nature and purpose. Later study of the images

used to think about these concepts, however, revealed that, even at this

stage, inconsistencies still existed within Stephen’s understanding of

these central concepts.

Of the two junior secondary students, after an introduction to the ideas

of function, Tony remained unable to articulate a verbal definition - “I

can do the questions but I don’t know what it is,” while Patrick

demonstrated a more coherent grasp of the concept. Asked to try to give

two different explanations of what a function is, he offered that “a

function is starting off with a difficulty in the sum and then working out

what the characters in the sum would need to do to solve it” (probably

identifying function with equation), but then noted that “a function is

being in a way related to someone or something,” demonstrating a

fundamental grasp of the central idea.

Summary

The various definitions of algebra, then, suggest a coherent and

consistent view which appears to permeate all levels studied. An early

understanding of algebra is most likely to be static, fixated upon its

representative nature, defined by the use of letters replacing numbers.
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Later views of algebra are likely to incorporate a more active element as

the previously representative object becomes a process of solving and

finding answers. The use of additional representations, even among

older students, was not common; of those mentioned, only the graphical

form was offered as an alternative and, for some students, this did

figure quite strongly in their thinking about algebra. Finally, algebra is

seen to have no function beyond its own borders: its place in school and

in mathematics is justified only by its own nature: algebra is studied in

order to study more algebra. Such a view offers little motivation for its

study for those for whom schooling is insufficient as an end in itself.

Understanding of algebra and its related concepts as demonstrated by

verbal definitions appears to be quite fragile among all secondary

students (and even some of the tertiary students), largely composed of

disparate and poorly connected concepts. The need to expose the links

between these ideas and the visual nature of many responses to

algebraic concepts suggest that a study of algebraic imagery may reveal

much more concerning the cognitive structures related to thinking

about algebra.

Images of Algebra

What are termed here “images of algebra” were elicited through

presentation of a series of ten cards, displaying a range of common

algebraic visual prompts which participants responded to in a variety of

ways. Participants were first asked to verbally describe each card, and

then to sort them into as many groupings as they could (this may be

considered a first order grouping). Four of the six Group A preservice

teachers engaged in this process, as did all the secondary students. The
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secondary students then engaged in a more detailed discriminatory

exercise, in which the ten images were presented three at a time, and

students were asked to “choose the odd one out” - to decide in what way

one image was different to the other two. This second order grouping

exercise forced students to compare and contrast properties of the

different images, and so potentially engage in a deeper analysis than the

previous sorts.

Figure 6.2: Sample of a RepGrid analysis

As a final, in-depth analytical mechanism, Stephen, Tony, Patrick and

the researcher (SMA/T1) engaged in a third order grouping, a detailed

Repertory Grid analysis of the categories which arose from the previous

discriminatory activity. Categories identified from the second order

grouping were taken in pairs, placed as the end points of a continuum,

and then presented with each of the ten original images. For example, I
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had distinguished between “parabola” and “straight line” in my second-

order grouping. I was then asked to decide the extent to which each of

the ten card images displayed these two properties by clicking at points

between them (Figure 6.2). This process attempts to explicitly expose

the network of relationships perceived by each individual in their

thinking about algebra.

Images were chosen so as to offer the basis for sorts based both upon

surface properties (for example, symbol/graph/numbers) and a range of

possible other categories, such as functions/non-functions, different

representations of the same symbolic form (cards 7 and 8) and even

potential errors, such as equating the graph in card 2 with the visually

similar symbolic forms of cards 7 and 8.

Before detailing the responses for each grouping, the initial verbal

descriptions for each image are examined. These proved revealing of the

level and nature of individual thinking regarding algebraic concepts,

especially in comparison with the verbal definitions already described.

Card 1(expression):  4 - 3x

It has been suggested that one likely impact of computer technology

upon the teaching and learning of algebra will be to move the central

object of focus for the algebra curriculum from equation to function

(Fey and Good, 1985, Kaput, 1992). Certainly the majority of computer

tools used in algebra learning take the function as their principal object

of action. An expression such as 4 - 3x may be viewed in several

different ways which are relevant in this context. In fact, different
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individuals were found to read a surprising variety of signals into such

a simple object.

Student teacher A2, for example, observed first that this was simply

“not an equation as such”  (suggesting the dominance of the equation

as an algebraic object of focus). Later, she expanded upon this:

This is a number statement that could show as the value of x increases, the
answer will be getting smaller. As x decreases (gets closer to zero) the answer will
be getting smaller but will not be less than zero. If the x value goes below zero
then the answer will be getting larger.

Note both the level of generality of the response (unrelated to the actual

visual features, such as the 4 and -3x components) and the active

process orientation, in which the value of the variable “x” is dynamically

linked to the “answer”. A2 does not say that as the value of x changes,

the answer “gets” smaller; her implication in using “getting” seems to be

of a highly fluid, dynamic relationship. In SOLO terms, this response

might be classified as indicative of formal operational thinking,

comparable to van Hiele’s Theoretical level.

The response of A3 was more typical of multistructural concrete-

symbolic thinking associated with the algebraic object: “From the

numeral ‘4’, a value calculated as 3 times another number ‘x’, is

subtracted. Any number can be substituted for x, and thus the

equation has multiple values”. Once again, the response carries with it

an active perception of process, this time related to the sequence of

operations implied by the algebraic expression and also associated with

the “function machine” image, of numbers “going in” and other

numbers “coming out”. Note the assumption by both individuals that

the unspecified expression can act as an “implied equation”.
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For preservice teacher, A4, the immediate response (“This doesn’t mean

jack shit to me”) was replaced by a more reasoned one: “This is a

function; when x is greater than 1 1/3 our answer is negative, when x is

1 1/3 our answer is 0, when x is less than 1 1/3 our answer is

positive”. He then goes on to comment: “I would feel more comfortable if

the card read 4 - 3x =”. Like A2, this individual looks beyond the visual

properties to respond almost automatically using equation-solving

techniques. The equation signal is so strong that the expression is

viewed as incomplete without an equals sign.

Both A5 and A6 responded in the same manner as did A3, reacting to

the surface stimuli of the expression and responding to the operational

process implied: “To me this is a statement which involves an unknown

quantity. It represents three lots of something being subtracted from 4”

(A5) and “This means 4 minus three times the value of an unknown

number. The x can take any value unless some restriction has been

placed upon it. In this form the expression can not be simplified. It is

simply a generalisation of the idea expressed in my first sentence”.

The responses of the preservice teachers fall clearly into two groups -

those who responded to the immediate visual signal of the object, and

those who operated at a higher level of generality. In all cases, however,

there appeared to be a level of confusion regarding the signal nature of

the expression: all wanted to do something to it - to substitute, to

simplify or, in the majority of cases, to solve. These are the responses

provided by traditional training in algebra - the desire for closure may

be satisfied by action upon the algebraic object, and only three

strategies are available, even to these highly trained students of

mathematics.
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The responses of the students to the expression 4 - 3x  were similarly

revealing. While Patrick admitted readily that “this doesn’t really mean

much to me because I haven’t worked with any of this stuff yet,” Tony

observed that it was, to him, “an equation and undoable question”.

Notice once again the desire to act stimulated by the algebraic

expression, a desire frustrated by a lack of available strategies by which

it may be operated upon. Jane and Ben both reacted to the visual

stimulus - “taking 3x away from 4” (Jane) and “a simple subtraction

equation where x is unknown” (Ben). The more experienced students,

however, vented their desire to act by relating the expression to the

coordinate plane: “line, y intercept at 4, gradient 3” (Andrea) and “this

equation makes me think of a straight line with a gradient of 3 and

crosses the x-axis at 1 1/3”  (Stephen). The readiness of these students

to assume a graphical metaphor by which to conceptualise the

expression appears likely to result directly from their increased

exposure to the graphical representation within their technology rich

learning environment. Notice that, for Stephen at least, this graphical

metaphor actually subsumed and included the equation-solving view of

the preservice teachers (since he had used these techniques to arrive at

the value of the x-intercept).

I had seen it as all these things: “An expression which describes a

numerical process, acting upon an infinite array of numbers to produce

a new infinite array. Graphically, this represents a straight line with

negative slope (of -3) passing through 4 on the y axis”. This relational

response links the various elements of the previous multistructural

responses.
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Overall, then, responses appeared to fall into three levels of increasing

complexity:

(1) an immediate, visual response, reacting to the symbol

nature of the expression;

(2) a first-level signal response which views the expression as

an equation to be acted upon, and

(3) a second-level signal response in which the object is viewed

in both a cross-representational sense and as an “implied

equation”.

Card 2 (equation - cf. Card 9): y = 2x - 1
Participants were far more comfortable with this image than with the

previous one. In every case (other than Tony - who saw it as an

equation to be solved - and Patrick, who had insufficient algebraic

experience to recognise it), the equation triggered the same response: as

representing a graph with gradient 2 and y-intercept -1. The signal

character of the equation in this form was strong and immediate.

Card 3 (parabola graph):

(Note that the symbolic form for

this graph is y = (x - 1)2. This

may be contrasted with both

Cards 7 and 8, which offer

different representations of a

similar but distinct symbolic

form.)

As with the equation, y = 2x - 1, the responses were uniform and

predictable. All recognised the signal of the parabolic form.
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Card 4 (x, y pair): ( x , y )
In all cases, this symbol was recognised as representing a point or

position on the number plane. The signal was clear and unambiguous.

Card 5 (function symbol): ƒ(x)
More varied were the responses to this symbol, ranging from the

unistructural “This is function x” (A4) and “This represents a function

with respect to x” (A5) to identification with numerical values (A3, A6,

Andrea and Stephen), pairs of numbers (Ben) and points on a graph

(Jane). The symbol appeared to trigger either an active numerical image

or a more static graphical one.

Card 6 (graph of y = 2 - x )

Once again, a uniform response

from all participants. All noted

that it was a straight line on the

number plane, and most identified

gradient as -1 and y intercept as

2.
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Card 7 (Table: y = x2 - 1)

(Note that the factored form of this

function is ( x - 1 )( x + 1 ):cf. Card

8 and contrast with Card 3).

Individuals responded in three

distinct ways: focusing upon the

table as points for a graph (Jane,

Tony and Patrick), as

input/output pairs (Stephen) or

as the result of a rule or equation

(A5, A6, Andrea and Ben).

Card 8 (expansion)

(cf. Card 7, contrast with Card 3)

( x - 1 )( x + 1 )

Responses to this card provide examples of what van Hiele refers to as

a rigid structure - the signal to act by expanding to give the familiar

“difference of two squares” was almost overpowering. All responded

algebraically, while only Andrea, Ben and Stephen reacted graphically

as well. Once again, the student teachers appear to react differently to

the students who have had exposure to computer tools and, as a

result, have become comfortable with the graphical representation.

Card 9 (equation)

(cf, Card 2)

2x - 1 = x + 7
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Like the expansion of card 8, participants appeared to react positively

to this prompt, apparently feeling themselves to be once more upon

familiar ground. All responded to the manipulative signal to act which

had been so effectively instilled in them by their algebraic instruction.

Interestingly, Andrea, Ben, Jane and Stephen all indicated solutions

involving the physical movement of parts of the equation “across the

equals sign”.

Card 10 (graph of x = 2)

(Note that this is an example of a

non-function). Participants saw it

as a straight line, with most

identifying it as  x = 2. It triggered

no other responses.

Analysis of the ten “images of algebra” across all participants and all

grouping activities led to the identification of eleven principal

descriptors, with several sub-categories related to the most common

occurrences of some of these. These are displayed along with the

participants from whom they were derived in Table 6.2.

Since all these participants responded to the same ten visual prompts

to produce the descriptors listed, the table gives some indication of both

the relative complexity of the thinking about algebra displayed by

different individuals (viewing vertically) and the relative frequency of

occurrence of the different descriptors (viewing horizontally).
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Table 6.2

Algebra Descriptors

A2 A3 A4 A5 A6 S1 S2 S3 S4 S5 S6 T1

1. Equation √ √ √ √ √ √ √ √ √ √ √ √

1. linear √ √ √ √ √ √ √ √ √ √

2. quadratic √ √ √ √ √ √ √

3. Non-equation √ √ √ √

2. Graph √ √ √ √ √ √ √ √ √ √ √ √

1. linear √ √ √ √ √ √ √ √ √ √

2. quadratic √ √ √ √ √ √ √ √ √ √ √

3. non-graph √ √ √ √ √

3. Function √ √ √ √ √ √ √ √ √ √

2. quadratic √

3. non-function √ √

4. Expression/symbol √ √ √ √ √ √ √ √ √ √

5. Signal to action √ √ √ √ √ √ √ √ √ √ √

6. Numerical value √ √ √ √ √ √ √ √ √ √ √

7. Function machine √ √ √ √ √ √

8. Relationship √ √ √ √

9. Table of values √ √ √ √ √ √ √ √ √

10. Variable √ √ √ √ √ √ √ √ √

11. (x,y) Coordinates √ √ √ √ √ √ √ √ √ √ √ √

- Non-coordinates √ √ √ √ √

With regard to the individual participants, it is not surprising to find S6

(Patrick) displaying the most limited range of descriptors, along with S5

(Tony) and S3 (Jane). This offers validation to the findings based upon

these student’s verbal definitions, to suggest that their network of

algebraic concepts is less well developed in comparison with the older

participants. Even among the preservice teachers, differences in

complexity are apparent, with A4 displaying the most limited repertoire

of ways of thinking about algebra. Neither is it surprising to find the

most extensive range of descriptors associated with myself as
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teacher/researcher, both because of my greater mathematical

experience, and also because of my role in designing the research

questions and analysing the results.

Most frequent descriptors across both students and preservice teachers

were the common algebraic forms - equations, graphs and (x, y)

coordinates. Distinctions between graphs - straight lines and parabolas

- were also evident for all but Patrick (S6), and there was general

recognition of functions, variables and expressions, although these

terms were not always used appropriately (equation and expression, for

example, tended to be interchangeable terms). Common, too, was an

active conception of algebraic forms - the signal characteristic

discussed previously. The identification of participant categories,

however, was only a first step in the research design. The final aim was

to make explicit relationships which might exist between these

categories, and to expose the nature of the cognitive network by which

the various individuals conceptualise algebra.

First Order Groupings

A useful measure of the complexity of individual thinking about algebra

was offered by the first order groupings of the image cards. This process

had an immediacy which tended to be revealing of the signal nature of

the various algebraic forms. Although at times the groupings were

idiosyncratic, there were clear patterns of consistency which went

beyond the “surface” characteristics of the cards.

My own groupings, both as an experienced mathematics educator and

as research designer, were, not surprisingly, the most comprehensive.
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Six groupings were identified which provide perhaps as much insight

into my perceived priorities within the research design as into my

algebraic thinking.

Table 6.3

First order groupings: SMA/T1
Group 1:
Expression
s

Group 2:
Equation
s

Group
3:
General
forms

Group 4:
Linear
graphs

Group 5:
Parabolas

Group 6:
Pairs of
numbers

Group 7:
Non-
functions

4 - 3x
(x-1)(x+1)
ƒ(x)

2x-1=
x+7
y = 2x - 1

(x, y)
ƒ(x)

Gr (y=2-x)
Gr (x=2)
y = 2x-1
2x-1=x+7
4 - 3x

Table
Gr (parab.)
(x-1)(x+1)

Table
(x, y)
Gr (y=2-x)
Gr (parab)
y = 2x-1
Gr (x=2)

Gr (x=2)

The explicit recognition of non-functions, the association of graphs,

table and equations as representing “pairs of points” and the inclusion

of the equation 2x-1 = x+7 and the expression 4 - 3x with other “linear

graphs” signify a perspective quite distinct from that of the other

participants. This difference will influence both the research design and

the analysis which follows.

Of the preservice teachers, A2 produced only two groups from her single

sort. These groups were mutually exclusive - all cards were included

once except the (x, y) pair which was apparently overlooked.

Table 6.4

First order groupings: A2
Group 1:
Showing y as a function of x

Group 2:
shows values of x

y = 2x-1
ƒ(x)
Table of values
Graph y = 2-x
Graph parabola
Graph x = 2

4 - 3x
(x - 1) (x + 1)
2x - 1 = x + 7
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A4 proposed four groups, reusing several prompts in the process.

Table 6.5

First order groupings: A4
Group 1:
Graphs

Group 2:
Functions of y

Group 3:
Coordinate Geometry

Group 4:
Solving equations

Graph (y = 2- x)
Graph (parabola)
Table of values
Graph (x = 2)
y = 2x - 1

(x, y)
Graph (parabola)
Graph (y = 2 - x)
Graph (x = 2)
Table of values

( x - 1 )( x + 1 )
y = 2x - 1
2x - 1 =  x + 7

4 - 3x
( x - 1 )( x + 1 )

Group 1 suggests that, like Stephen, A4’s thinking about algebraic

objects is strongly influenced by their visual format. While the function

symbol, the linear equation and even the graphs and table of values

were seen as explicitly denoting a functional form, the two expressions

and the equation to be solved were not. Rather, these were seen as

representing values of x (and, by implication, not values of y). An

expression such as 4 - 3x appears to lack the signal character of an

equation such as y = 2x - 1. Note, too, the incorrect inclusion of the

graph x = 2 as a function.

It should be noted here that Groups 1 and 2 are essentially the same,

with only the equation y = 2x - 1 and the ordered pair (x, y) to

distinguish them (even these appeared arbitrary, since the first could

certainly be considered a “function of y” and the ordered pair is

commonly associated with “graphs”, consistent with A4’s association of

the table of values with the cards indicating graphs.) Again, the graph of

the deliberate non-function, x = 2, was grouped with “functions”, and

the two expressions were incorrectly labelled as equations (Group 4).

This last suggests that A4 may see an implied equation form, such as 4

- 3x = 0 when viewing the expressions. This grouping excluded the
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function symbol, ƒ(x) and, overall, tended to suggest a poorly organised

cognitive network related to algebra.

A5 and A6 showed surprising consistency in their cognitive

organisation. Both created five categories, which included straight lines,

parabolas, equations and graphs. Both recognised the table of values

and the expression (x - 1)( x + 1) as representations of quadratic forms,

suggesting an ability to move across symbolic, graphical and numerical

representations, and indicative of a relatively high level of functioning in

this domain. At the same time, neither clearly distinguished

expressions from equations, nor explicitly differentiated functions from

non-functions, even though all preservice teachers had included the

uniqueness property within their verbal definitions of function. In fact,

A2, A4 and A6 incorrectly placed the graph x = 2 within groupings

designated as “functions”. Knowledge of the formal definition does not

necessarily imply the ability to correctly apply it, a result which echoes

the findings of Vinner and Dreyfuss (1989).

Table 6.6

First order groupings: A5
Group 1:
Straight lines

Group 2:
Parabolas

Group 3:
Equations

Group 4:
Statements

Group 5:
Graphs

Graph (y= 2-x)
y = 2x - 1
Graph (x = 2)

Graph (parab.)
Table of values
(x-1)(x+1)

y = 2x - 1
Graph (parab.)
2x-1 = x +7
Graph (x=2)
Graph (y=2-x)
(x-1)(x+1)

4 - 3x
y = 2x - 1
2x - 1 = x + 7
(x - 1)(x + 1)

Graph (parab.)
Graph (y = 2-x)
Graph (x = 2)
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Table 6.7

First order groupings: A6
Group 1:
Linear
equations

Group 2:
Quadratic
equations

Group 3:
Functions

Group 4:
Equations

Group 5:
Coordinates/
Graphs

4 - 3x
Graph (y= 2-x)
Graph (x = 2)
y = 2x - 1

Table of values
Graph (parab.)
(x-1)(x+1)

Table of values
ƒ(x)
Graph (parab.)
Graph (x=2)
Graph (y=2-x)

y = 2x - 1
2x - 1 = x + 7

(x, y)
Graph (y = 2-x)
Graph (parab.)
Table of values
Graph (x = 2)

The groupings produced by the secondary students were similarly

diverse. Andrea (S1) identified three categories only, but these spanned

the symbolic and graphical representations. Thus she correctly grouped

both graphical forms of parabola and straight lines with their symbolic

forms, and included the expression 4 - 3x and the equation 2x-1 = x+7

as straight lines. She was not, however, able to interpret the table of

values in order to recognise its quadratic nature, nor was she able to

place the ƒ(x) symbol in relation to the other cards. For  a student

attempting the high level Three Unit course in mathematics, this

grouping suggests a limited cognitive repertoire regarding algebraic

understanding, but one within which the graphical representation plays

a significant part.

Table 6.8

First order groupings: S1 (Andrea)
Group 1:
x & y coordinates

Group 2:
Parabolas

Group 3:
Straight lines

(x, y)
Table of values

Graph (parabola)
(x - 1)(x + 1)

Graph (y=2-x)
4 - 3x
y = 2x-1
Graph (x=2)
2x-1 = x+7

Like Andrea, Ben’s sort appeared to be strongly influenced by surface

characteristics of the algebraic images presented, although Andrea’s
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categories related to algebraic properties, while Ben’s arose from visual

cues. There was little evidence of insight into connections between the

various cards beyond that suggested by their visual appearance. As

with most other participants, equations and expressions are considered

interchangeable terms and, in Ben’s case, the ƒ(x) symbol is associated

with graphs.

Table 6.9

First order groupings: S2 (Ben)
Group 1:
Expressions of
algebra

Group 2:
Graphs

Group 3:
Pairs

Group 4:
Equations which
can be solved

(x-1)(x+1)
4 - 3x
2x-1 = x+7
y = 2x-1

Graph (y = 2-x)
Graph (parabola)
Graph (x =  2)
ƒ(x)

Table of values
(x, y)

2x - 1 = x + 7
y = 2x-1
(x-1)(x+1)

Jane engaged twice in the algebra card sort, offering four groups

initially and seven groups later in the research process. She chose to

use both graph plotter and table of values during the second sort to

examine two of the images more closely (the graphical image of the line

y = 2 - x,  for which Jane used the graph plotter to ascertain the values

of the intercepts, and the table of values card - after entering the values

into the table of values utility, she then plotted these using the graph

plotter). This use of tools supported increasing breadth and depth of

analysis as suggested by the Vygotskian Zone of Proximal

Development. Jane used the available tools to go beyond her current

cognitive state and consequently recognised properties of the algebraic

images which, while meaningful, were beyond that which she could

have done unaided (she recognised, for example, the quadratic nature

of the table of values image).
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Table 6.10

First order groupings: S3 (Jane): Sort 1
Group 1:
Algebra

Group 2:
Graphs

Group 3:
Functions

Group 4:
Equations

4 - 3x
(x, y)
(x-1)(x+1)
2x-1 = x+7
y = 2x-1
ƒ(x)

Graph (y = 2-x)
Graph (parabola)
Graph (x =  2)
Table of values

(x, y)
ƒ(x)
y = 2x-1
Table of values

2x - 1 = x + 7
y = 2x-1

Jane’s first sort is surprisingly similar to that of Ben, both offering a

“grab-bag” of algebraic forms in Group 1 (possibly anything with an “x”

in it), and very similar groups for graphs and equations. Jane’s use of

the term functions as a category is interesting in the light of her

uncertainty regarding its meaning which had been exposed in the

earlier interview. This had perhaps sensitised her to the term and led to

an increased awareness of its occurrence. Her choices for this group

were all appropriate, suggesting that she is able to recognise examples

of its occurrence to at least a limited extent.

Jane’s second sort suggests increased cross-representational facility -

the table of values is recognised as representative of both graph and

parabola and the symbolic forms, y = 2x - 1, (x, y) and ƒ(x) are readily

associated with graphs as well as input/output numbers. It would

appear that these algebraic images have moved through the use of

software tools and from exposure to a technology-rich learning

environment from possessing a symbol nature as demonstrated in sort

1 to acting as meaningful cognitive signals in the later sort.
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Table 6.11

First order groupings: S3 (Jane): Sort 2
Group 1:
Graphs

Group 2:
Algebra

Group 3:
Equations

Group 4:
Involve
numbers

Group 5:
Substitution

Group 6:
Straight
line graphs

Group 7:
Points on a
graph

Group 8:
Parabolas

Gr (y=2-x)
Gr (par.)
Gr (x=2)
(x, y)
Table
ƒ(x)
y = 2x-1

(x-1)(x+1)
2x-1=x+7
y=2x-1
4 - 3x
ƒ(x)

2x-1 = x+7
y = 2x-1

4 - 3x
Table
(x-1)(x+1)
y = 2x-1

ƒ(x)
(x, y)

Gr (y=2-x)
Gr (x=2)
y = 2x-1

Table
(x, y)
ƒ(x)

Table
(x-1)(x+1)
Gr (par.)

Like Jane, Stephen (S4) also engaged twice in the algebra card sort

activity and, also like Jane, increased over the intervening period from

four categories to seven categories. He chose, however, not to make use

of available software tools. His first sort was restricted in that he used

each card only once, and so sorted them into exclusive categories. He

displayed limited cross-representational facility, recognising the

equation y = 2x-1 as a linear graph and the expression (x-1)(x+1) as

representing a parabola. He also treated the expression, 4 - 3x, as an

“implied equation”, capable of solution if “= 0” is assumed as a suffix.

Functions were included only as symbolic and numerical forms (the

table of values implying for Stephen an “input/output” image suggestive

of function).

Table 6.12

First order groupings: S4 (Stephen): Sort 1
Group 1:
Functions

Group 2:
Solving equations

Group 3:
Straight lines

Group 4:
Parabolas

ƒ(x)
Table of values
(x, y)

4 - 3x
2x-1 = x+7

y = 2x-1
Graph (y=2-x)
Graph (x=2)

(x-1)(x+1)
Graph (parabola)
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Table 6.13

First order groupings: S4 (Stephen): Sort 2

Group 1:

Function

Group 2:

Straight

line

Group 3:

Parabola

Group 4:

Equation

Group 5:

Coordinates

Group 6:

Equation for

axis

Group 7:

Find values

for variables

Table

ƒ(x)

Gr (y=2-x)

Gr (x=2)

y = 2x-1

Gr (parab.)

(x-1)(x+1)

4 - 3x

2x-1 = x+7

y = 2x-1

(x-1)(x+1)

(x, y)

Table

Gr (x=2)

y = 2x-1

Gr (parab.)

Gr (y=2-x)

4 - 3x

(x-1)(x+1)

2x-1 = x+7

Although Stephen demonstrated the most versatile and deep

understanding of algebraic concepts of the student group, his second

sort showed less improvement than did Jane’s. His increased number of

groupings appeared generally consistent but somewhat arbitrary (as in

“Equation for axis”), and overall this sort demonstrated little

improvement in his cognitive organisation than that which was made

evident in the first. Although he showed good familiarity with the

graphical representation, he appeared unable to interpret the table of

values in a meaningful way.

Tony engaged in three first order sorts over a period of twelve months.

Although the number of groupings increased in that period (from three

to five), they remained based firmly upon superficial features of the

images.

Table 6.14

First order groupings: S5 (Tony): Sort 1
Group 1:
Equations

Group 2:
Number planes

Group 3:
Things I don’t understand

(x - 1)(x + 1)
2x-1 = x+7
y = 2x-1

Graph (parabola)
Table of values
Graph (y = 2-x)
(x, y)
Graph (x=2)

4 - 3x
ƒ(x)
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Interestingly, Tony’s second sort reduced the number of groups to two:

Table 6.15

First order groupings: S5 (Tony): Sort 2
Group 1:
Graphs

Group 2:
Equations and algebra

Graph (y = 2-x)
Table of Values
Graph (parabola)
(x, y)
Graph (x = 2)

4 - 3x
(x - 1)(x + 1)
y = 2x - 1
2x - 1 = x + 7
ƒ(x)

This second sort demonstrated improvement in both the appropriate

use of technical terms (“graphs” instead of “number planes”) and a clear

distinction between what, for Tony, are the two fundamental divisions

within algebra: symbols and graphs.

Tony’s third sort displayed a finer detail and a better grasp of the

language of algebra (“coordinates” and correct use of the term

“expression”) but not necessarily a deeper understanding of the

distinctions between the various images. He now has a name for those

“things I don’t understand” from sort 1, and the expression 4 - 3x has

acquired the signal property of “something to be solved” which leads to

inclusion with the equations - although, once again, the other

expression, (x-1)(x+1), was omitted (it had been seen as an “equation”

in the first sort). Tony had studied expansion of binomials at school by

this time, and indicated that he “knew what to do with this one”,

implying that he saw (x-1)(x+1) as something to be expanded. It seems

possible that the stronger “expansion” signal served to “swamp” the

“equation” signal in this case. Note that he correctly places the symbol

ƒ(x) as an expression, showing recognition of this form.
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Table 6.16

First order groupings: S5 (Tony): Sort 3
Group 1:
Graph

Group 2:
Equations

Group 3:
Coordinates

Group 4:
Table

Group 5:
Expression

Gr (parabola)
Graph (y=2-x)
Graph (x=2)
(x, y)

y = 2x-1
2x-1 = x+7
4 - 3x

(x, y)
Table of values

Table of values 4 - 3x
(x-1)(x+1)
ƒ(x)

Finally, as a novice to algebra, Patrick’s sorts would be expected to be

based upon superficial cues, since the images possess for him no

underlying meaning. His groupings reflect this.

Table 6.17

First order groupings: S6 (Patrick): Sort 1
Group 1:
Graphical

Group 2:
Numbers and
letters

Group 3:
Mix

Group 4:
 Loner

Group 5:
Problems

Gr (parabola)
Gr (y=2-x)
Gr (x=2)

4 - 3x
(x, y)
(x-1)(x+1)
2x-1=x+7
y = 2x-1
ƒ(x)
Table of values

4 - 3x
Gr (y=2-x)
Table of values
(x, y)
Gr (parabola)
y = 2x-1
ƒ(x)
Gr (x=2)
2x-1 = x+7
(x-1)(x+1)

ƒ(x) (x, y)
4 - 3x
y = 2x-1
2x - 1 = x + 7
(x-1)(x+1)

Even at this early stage, Patrick recognised that algebraic forms possess

a signal nature: his last group, “Problems”, indicates objects which he

saw as requiring some action, although he was unsure of what that

action should be. His second sort was much more clearly defined than

the first, with three clear and distinct groupings which again reflect the

surface features of the algebraic forms.
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Table 6.18

First order groupings: S6 (Patrick): Sort 2

Group 1:

Graphs

Group 2:

Equals

Group 3:

Numerals

Graph (y = 2-x)

Graph (parabola)

Graph (x=2)

(x-1)(x+!)

2x-1 = x+7

y = 2x-1

4 - 3x

(x, y)

Table of values

ƒ(x)

Patrick’s inclusion of the expression (x-1)(x+1) within the group labelled

“equals” and the presence of the symbolic forms (x, y) and ƒ(x) (and

even the expression 4 - 3x) among “numerals” reveals his recognition of

the implicit and symbolic nature of algebra, where the symbols possess

meaning beyond their surface appearance. Such a recognition appears

to signify an important step forward in algebraic understanding. This

understanding is probed further through the use of deliberate

comparative techniques which give rise to the next level of image sorts.

Second Order Groupings

The deliberate comparing and contrasting of algebraic images (picking

the “odd one out”) offers an added degree of depth to the analysis of

participant responses, forcing them to go beyond the often-superficial

viewing associated with a verbal description. In particular, respondents

who had difficulty in supplying verbal descriptions are provided with a

non-verbal means of conveying elements of their thinking about

algebra. At the same time, these non-verbal responses are

supplemented by comments regarding the choice made, which provide

further insight into the reasons for these choices (text records for these

comments are recorded in Appendix E). Each of the student
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participants (except Jane) provided responses to this activity (Jane had

left the program before this instrument had been developed); my own

responses (SMA) are included as a further bracketing device (Table

6.19)

Table 6.19

Second Order Groupings: “Pick the odd one out”

Andrea Ben Stephen Tony Patrick SMA

1
4-3x
y = 2x-1
Gr (y=2-x)

1 3 1 1 3 2

2
Gr (par)
(x-1)(x+1)
Table

1 1 3 2 1 1

3
(x, y)
2x-1=x+7
Table

2 3 2 2 3 2

4
ƒ(x)
4 - 3x
Gr (x=2)

2 2 2 2 3 3

5
(x-1)(x+1)
2x-1=x+7
4 - 3x

1 1 1 1 3 2

6
Gr (y=2-x)
Gr (par)
Gr (x=2)

2 2 2 2 3 3

7
y = 2x-1
(x, y)
2x-1 = x+7

2 2 3 2 2 1

8
y = 2x-1
ƒ(x)
2x-1 = x+7

2 2 3 2 2 1

9
Gr (y=2-x)
Gr (par)
Table

1 2 3 1 3 1

10
ƒ(x)
(x, y)
(x-1)(x+1)

3 1 3 3 3 3

The sorting of the ten images into triads was, in most cases, deliberate

rather than random. Triad 1 grouped the three major algebraic

categories: expression, equation and graph. Ben and Patrick both used
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an immediate visual distinction, and I distinguished on the basis of

negative gradient. The remaining students associated y = 2x-1 with the

graph and saw the expression as the “odd one out”.

Triad 2 grouped graph, table of values and expression, with mixed

responses. The direct correspondence between the rule for the table of

values and the algebraic form was recognised only by myself and

Andrea, demonstrating a high level of cross-representational facility on

her part. She had learned to interpret the table as a representational

form. Ben also nominated the graph as the “odd one out”, but for the

superficial reason that both table and expression had “x values of -1

and 1”. Stephen recognised that both graph and table represented

parabolas, while Tony equated the tabular form with the graphical form.

This item exposed a distinct hierarchy of responses:

Level 0:  Patrick and Ben, who responded at a purely visual level,

Level 1: Tony saw the number pairs of the table as a general signal

to graph these points.

Level 2: Stephen transferred meaning across the graphical and

tabular representations, but on a visual level only.

Level 3: Andrea transferred meaning on a symbolic level.

The third triad demonstrated that, for most participants, the link

between the tabular representation and the ordered pair symbol, (x, y),

was a strong one. Although, once again, Ben and Patrick responded in

the same way, they did so for different reasons. Patrick focused upon

the superficial “equals” prompt, which he saw as implied in the ordered

pair but not in the table of values. Ben, on the other hand, contrasted
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the “known x and y values” of the table with the unknowns of the other

two forms.

Triad 4 exposed the strong link between the ƒ(x) symbol and the

graphical representation for all students but Patrick. Patrick

distinguished the graph from the “non-graphs”, while I distinguished

functions from non-function.

Triad 5 was similarly consistent across the students, but for a range of

reasons. Andrea and Ben responded to the graphical representation

implied, distinguishing between quadratic and linear forms. Tony

responded to the “expansion” signal of the expression, while I focused

upon expressions as opposed to equations. Stephen’s verbal response to

this item sees him again view the expression 4-3x as an “implied

equation”, while (x-1)(x+1) does not have this property: “For the two

that are alike you find an x-value, and with the other one it just

describes a function”. Clearly, for Stephen, the expression (x-1)(x+1)

possesses a much more limited signal character than the linear

expression.

It is hardly surprising that item 6 produced such a consistent response

- the visual signal of curved/straight, parabolic/linear produced a

prompt reaction from all students but Patrick, who saw the vertical line

as somehow different to the other two (but could not say why), while I

focused upon the function/non-function distinction.

A similar strong visual signal was sent by the equals sign in both Triads

7 and 8. Stephen’s response to both items, however, was strongly

influenced by the graphical representation which he brought to the
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question, linking y=2x-1 and (x, y) in Triad 7 (“The similar ones are

describing a straight line with two pronumerals (x and y), and the other

one just defines an x-value as a number not in terms of y”), and y=2x-1

and the symbol ƒ(x) in Triad 8 (“The similar ones are functions and

describe a graph or what you get if you put x-values in and make a

picture, and the odd one out just finds the x-values”). Once again,

Stephen’s strong reliance upon the function-machine metaphor for

thinking about functions is evident here.

Item 9 caused a range of responses: Andrea and Tony both

demonstrated again that they are able to interpret the table of values

representation, distinguishing parabolas from straight lines; Stephen

and Patrick both responded superficially upon the basis of graphs and

table forms, while Ben chose the parabola as the odd one out since it

does not go below the x-axis, whereas the other two do. This

demonstrates a limited ability to interpret tabular information.

Ben was also the “odd one out” in his response to the last item, seeing

ƒ(x) as a more general symbolic form than (x, y): “The other two could

both be just points, while ƒ(x) could be anything”. The other

respondents accorded both symbols equal levels of generality, as

opposed to the more specific expression.

The overall impression gained from these second order groupings is that

of students who are all able to demonstrate quite strong cross-

representational facility, at least across symbolic and graphical forms.

Interpretation of the tabular form is much more limited, consistently

found only in Andrea and apparently all but absent in Stephen, who
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prefers to think graphically. Along with Tony and Patrick, Ben displays

a very limited representational repertoire.

Third Order Groupings

The task which gave rise to the third order groupings was a very time-

consuming one, taking up to thirty minutes to complete. For this

reason, only four participants were engaged in this activity - myself,

Stephen (as the principal informant) and the two junior secondary

students, Tony and Patrick (whose limited algebraic experience meant

that they had been restricted in their access to appropriate language

and forms of expression by which their understanding might be

examined). The previous tasks in these two cases had furnished limited

information regarding their algebraic thinking - it was hoped that this

detailed analysis might provide a useful non-verbal vehicle by which

their cognitive frameworks might be better assessed.

This task involved three steps:

1. The verbal statements which had accompanied the second order

grouping process were examined, and used to give rise to a number of

descriptors which appeared to figure prominently in their thinking

about the algebraic images. This process of extraction took place in

collaboration with the informant, increasing validity for the descriptors.

2. The descriptors were entered into the HyperCard RepGrid stack and

participants would again view each card individually. This time,

however, instead of requiring a verbal descriptor, the descriptors would

be displayed in pairs, as the ends of a continuum (see Figure 6.2).

3. Participants would choose an appropriate response which situated

the given image in relation to the two descriptors.
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In my case, the ten comments which accompanied my second order

grouping process (Table 6.19) were:

1. They both have negative gradient.
2. They both represent x2 - 1, while this one is (x-1)2.
3. They imply an infinite set (or at least multiple ordered pairs); the equation

implies a single pair.
4. This is a non-function; the others are functions.
5. The others are expressions (implying an infinite array of values); this is an

equation.
6. Non-function.
7. The ordered pair representation for the others is explicit in x and y; for the

equation it is implicit.
8. The other two each represent individual functions; the equation represents

the equality of two distinct functions.
9. The others both represent parabolas.
10. Both the others are purely symbolic forms.

These comments gave rise to seven descriptors:

• function

• non-function

• equation

• expression

• graph

• table of values

• symbols

Stephen’s comments for each of the ten triads were as follows:
1. The other two both have two pronumerals (x and y) but 4-3x has only one.

It doesn't tell you what comes out if you put numbers in.
2. The other two are both parabolas and the other one is just a set of values

which you put in and something comes out.
3. The other two both have one value going in and another coming out, but

in the third one it is just finding the x-value.
4. The others are a function with special values - whatever you put in you get

different answers, but in the third one it’s just a statement - it doesn't
show what you get out.

5. For the two that are alike you find an x-value, and with the other one it
just describes a function.

6. The two alike are just straight lines, and the odd one out is a parabola.
7. The similar ones are describing a straight line with two pronumerals (x

and y), and the other just defines an x-value as a number not in terms of
y.
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8. The similar ones are functions and describe a graph or what you get if you
put x-values in and make a picture, and the odd one out just finds the x-
values.

9. The other two are graphs on x and y axes, and the odd one out is a table
of values - you don't really know what it is describing, which side is x or y.

10. The odd one out is not equal to anything, and the similar ones are
describing a function.

From these were derived seven descriptors which encapsulated what for

Stephen appeared to be key concepts regarding algebra:

• two pronumerals

• parabola

• function

• straight line

• graph

• table of values

• equation

Tony’s comments were:
1. Because one had an x and a y in it, and the other was a graph - they both

use x and y coordinates.
2. Because the table represents a graph and that ones a graph.
3. Because x and y are coordinates and the table is used in representing

graphs.
4. Because the f(x) one has something to do with graphs .
5. Because the odd one out involves expansion and the other two are simple

equations.
6. Because they are straight and the other one is a parabola.
7. Because the other 2 are equations and the one in the middle is a

coordinate.
8. Because the other 2 are equations (again) and the odd one is a coordinate.
9. Because the table plots a parabola out and the other one is a straight line
10. The top 2 represent something to do with graphs and the bottom one has

something to do with expansion.

These led to the identification of eight descriptors:

• graph

• coordinates

• table

• x and y

• equations
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• expansion

• parabola

• straight line

Finally, Patrick’s comments are given:
1. the other 2 are numerals but this one was a picture
2. I'm not sure about this one so I’m skipping this one.
3. The other 2 are describing how one thing equals another.
4. This one is a graph but the other 2 aren't.
5. I don't know.
6. the other 2 are marked by certain coordinations but this one isn't.
7. The other 2 describe what eg. x=, y=.
8. This is a symbol the other 2 aren't.
9. the 2 matchies  are picture graphs but this one isn't.
10. the others are symbols but this one isn’t.

Once again, seven descriptors were identified as arising from these:

• numerals

• picture

• not sure

• graph

• equals

• coordinations

• symbol

The full text of the third order groupings for each individual is recorded

in Appendix E.

Analysis of the responses for each image card allows quite detailed

assessment of individual thinking in relation to that concept. Responses

for each card will be considered for the four respondents.

For myself, the algebraic expression 4 - 3x elicited responses which

classified it as symbol, function, expression, graph and table of values,
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but not an equation or non-function. It was seen as possessing

characteristics of both graph and table of values, although more symbol

than either of these. For Stephen, however, it was an image which was

largely devoid of meaning - it was not associated with any of the

categories chosen. It had no graphical or table of values form, was not a

function (since it did not possess the “y=“ prefix) and was not even

associated with a straight line. Stephen’s response to this item not only

clearly highlights his erroneous conception of function, but

demonstrates that the expression as an algebraic form has little signal

character.

The expression elicited a similarly negative response from Tony,

although he did associate it with “equation” and, interestingly, with

table of values but not graph. For Tony, the table of values appeared to

be perceived as a more flexible representation than the graphical form,

more closely related to both formulas and numerical values.

For Patrick, the expression was dominated by its association with

numerals, coordinations (Patrick’s expression for the “x” and “y”

coordinates of algebra) and its symbolic nature. It was not linked to

graphs, pictures or “equals” (equation forms). He perceived the other

expression, (x-1)(x+1), in exactly the same way.

The symbolic (x, y) pair was perceived by me as representing equation,

graph, table of values and symbols, but not function, non-function nor

expression. The explicit “x” and “y” elements implied an association of

equality which could be represented in various forms, but excluded the

notion of expression which was considered to be defined by its lack of
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an explicit y-variable. Function and non-function links were rejected

because the pair could equally represent either form.

For Stephen, the association of the ordered pair with two pronumerals

was an obvious one, but it possessed partial characteristics of other

responses. It was, for example, considered to be “more two pronumerals

than straight line or equation”, and yet “more graph and table of values

than two pronumerals”. It was seen to possess some elements of

parabola, straight line and function, and equally both graph and table

of values. This partial categorisation suggests a more mature and

flexible cognitive network than those which are strictly “black and

white”, in which each item is purely one thing or another (which was

more evident among the two younger students). Stephen’s ability to

perceive in algebraic images various “shades of gray” suggests that his

thinking is relatively rich and diverse.

For Tony, the (x, y) pair was strictly “coordinates” and “x and y”, and

possessed characteristics of both graph and table of values, but not of

equation, expansion, straight line or parabola. For Patrick, the image

was “coordinations”, “numeral” and “symbol”, with some lesser

association with “graphs” and “equals”.

The responses to the three graphical images were quite consistent for

all participants. In my own case, I distinguished between functions and

non-functions, and noted that the images possessed an element of the

table of values form. Tony, similarly, saw the graphs as “more graph

than table of values”, while Stephen rated them equally - for Stephen, a

graph was as much associated with the numerical values from which it

was derived as with the graphical form.  Patrick, too, recognised the role
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of “coordinations” as of equal importance in determining the graph as

the visual form.

The ƒ(x) symbol drew some varied responses. While I associated it with

function, expression, graph, table and symbol, I rejected association

with equation, since the required “=“ symbol is absent. Stephen, on the

other hand, saw it as linked to everything, possessing elements of

equation, function, graph, table of values, even parabola and straight

line. While Tony recognised a relationship with graphs, tables and

coordinates, he rejected links with equation, straight line and parabola.

The presence of the parentheses probably accounts for his perceived

link with “expansion”. Finally, Patrick saw it as a “symbol” with links to

“numerals” but nothing else.

The equation y = 2x - 1 was associated with graphs, tables of values

and straight lines by myself, Stephen and Tony, while Patrick linked it

with numerals and “equals”. The other equation (2x - 1 = x + 7),

however, led to more diverse responses. I saw it as an equation with

elements of graph, symbol and table of values. Tony and Patrick linked

it only to “equation” (or “equals” in the latter case), with Patrick

recognising a numerical component. Both rejected association with

graphical and tabular forms.

Stephen’s response to the equation was somewhat surprising since,

after rejecting association with function, “two pronumerals”, parabola,

straight line and the graphical representation, he explicitly linked it

with the table of values. Further, this was a clear and deliberate

relationship, which he identified several times in the task. In particular,

he explicitly rejected the graphical form but chose the tabular. Until
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this point, the two representations had appeared to be interchangeable

in Stephen’s way of thinking (although the table had appeared a little

more flexible). Clearly this item demonstrates that, to Stephen, an

equation is a table of values and that this form, unlike the graphical

form, may not require a specific format for the algebraic object.

Stephen’s diverse understanding of the tabular representation was

further highlighted in his responses to that particular image, in which

he associated it with function, equation, graph, parabola and two

pronumerals.  Responses for Tony and Patrick regarding the table of

values card were more limited, relating it to coordinates and graphs but

not equations in both cases.

The networks of relationships derived from this task proved highly

informative regarding the algebraic thinking of the various individuals

involved. While the previous sorting tasks had allowed the identification

of the various categories by which algebraic objects were

conceptualised, this final task allowed these categories to be located

within a dimensional space. Summary diagrams of these concept

networks are presented in Figures 6.3 - 6.6.
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Figure 6.3: Concept Network for SMA
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The illustration of my own concept network depicts well-developed links

for most descriptors. Some measure of this complexity is provided by

the number of links associated with each node, or descriptor (note that

the heavier lines indicate a strong connection across at least four

different images; thinner lines indicate that the link was found in only

one or two image cards). By this measure, the GRAPH and SYMBOL

descriptors are the richest, associated with the widest range of algebraic

concepts. The table of values is slightly less diverse, since the graph

was found to be associated with a non-function, whereas the table of

values representation was not. Similarly, EQUATIONS and

EXPRESSIONS were strong but mutually exclusive categories, as were

FUNCTIONS AND NON-FUNCTION. The network is suggestive of a

relational understanding of algebra, in which the various components

are perceived as meaningful, both in themselves and in relation to each

other.
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Figure 6.4: Concept Network for Stephen (S4)
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Stephen’s network of concepts displays well-developed links between all

major categories, suggesting good algebraic understanding. His

graphical thinking appears to be better developed than that associated

with the table of values, with EQUATIONS and TWO PRONUMERALS

being most extensively related. Stephen’s thinking appears more “black

and white” than that of the researcher - his concept links appear more

of the “all or none” kind, suggesting that he distinguishes less clearly

between them (as in his use of the terms “function” and “equation”).

Although his understanding is best described as relational, it is clearly

of a different order to that of myself.

The differences between the concept network for Stephen and those for

Tony and Patrick are immediately clear. While the younger students

might have identified as many descriptors, these are poorly developed
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and associated constructs. Their relationships with other concepts is

tenuous at best, illustrative of multistructural understanding at best.

Figure 6.5:  Concept Network for Tony (S5)

COORDINATES

EQUATIONS

GRAPH

x AND y

EXPANSION

STRAIGHT

Tony  (S5)

TABLE

PARABOLA

It is hardly surprising to find Patrick’s concept network to be even more

limited than that of Tony, sure only that algebra involves pictures,

graphs, numerals and symbols. Like Tony, repeated descriptors may be

recognised: “x and y” and “coordinates” for Tony, “pictures” and

“graphs” for Patrick. Patrick’s few strong links are those between

NUMERALS and SYMBOLS, and PICTURES and GRAPHS

(demonstrating the symbol nature of algebraic forms). Clearly, for Tony,

graphs are more meaningful objects than for Patrick, even to the

recognition of the symbolic connections between equations and

expressions and their graphical forms.
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Figure 6.6:  Concept Network for Patrick (S6)

COORDINATIONS

NOT SURE

GRAPH

NUMERALS

PICTURE

Patrick (S6)

EQUALS

SYMBOL

The network diagrams shown above provide immediate visual clues as

to the cognitive organisation of the participants. They illustrate both the

nature and the relative strength of the relationships between the

various constructs which go to make up each individual’s cognitive

network within the domain of algebra. Across all participants involved

in the study, it is now possible to recognise important and detailed

features of their algebraic thinking as a result of the intricate

examination which has been described. The cognitive profiles which

have been developed provide valuable insight into the algebraic thinking

of these individuals which will give guidance in our further study of the

role of computer tools in the algebra learning process.
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An overview of algebraic thinking

It is useful at this point to draw together the extensive and varied

findings related to algebraic thinking elicited so far. Although many

aspects of such thinking are striking in their consistency across not

only age and ability groupings, but even across student and preservice

teacher groupings, other features define distinct individual conceptions

of algebra for the various participants. It is possible at this stage to

compare and contrast the algebraic thinking of the various groups of

individuals who provided data for this study.

The preservice teachers displayed algebraic thinking which was

generally versatile and reflected both traditional considerations - rules,

formulas, variables - and some elements clearly drawn from their

pedagogic studies, especially the role of patterns and concrete materials

in algebra learning. Explicit recognition of formal aspects of algebra

(especially the uniqueness property of functions, notions of domain and

range and active conceptions of variable) suggest mature and well-

connected understanding. At the same time, alternative representations

appeared to play little part in their conceptions of algebra, with only A3

specifically mentioning graphs in relation to definitions of algebra, and

tables of values in relation to functions. The grouping tasks indicated

considerable variation in the depth of thinking inspired by the various

images of algebra, from quite superficial connections on the part of A2

to relatively well-connected and rich groups displayed by both A5 and

A6. Even at this level of mathematical achievement, there appears to

exist quite significant diversity in the depth and connectedness of

algebraic thinking among those who will soon be teaching the subject,

with the majority clearly dominated by traditional perceptions and
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manipulative aspects of the study of algebra. As with the student

participants, particular images were associated with strong and well-

developed signal characteristics while others (especially the simple

expression and table of values) appeared to be poorly connected in

relation to both other representations and appropriate action strategies.

Of the student participants, Stephen and Andrea appeared most similar

in the majority of their responses to both definition-based and image-

based research activities. Each recognised algebra as serving both a

representational role and an active “solving” role. Each showed good

facility for relating symbolic and graphical information (correctly

interpreting the algebraic expressions 4 - 3x and (x - 1)(x + 1) in terms

of their graphical features) and each explicitly recognised variables as

representing multiple unknowns. In contrast, Ben saw algebra as

fulfilling only a “solving” function, failing to recognise its usefulness in

representing information in a variety of ways. Although Ben was

functionally able to recognise and interpret the graphical

representation, he appeared limited to this mode, unlike his peers who

were able to operate across symbolic, graphical and numerical

representations. Ben demonstrated a preference for graphical imagery

when interpreting algebraic information, a reliance which proved useful

for him on many occasions, but also hampered his ability to act and

think flexibly when required.

Stephen displayed a preference for an active “function machine” image

when thinking about and describing algebraic ideas. This image

involved numbers “going in” to a symbolic expression and other

numbers “coming out”. Such thinking proved to be far more flexible

than Ben’s graphical image, readily supporting cross-representational
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thinking. In fact, the function-machine image appears to serve as a link

across the three major representations, supporting versatile thinking

which translates readily across numerical, graphical and symbolic

forms. In Stephen’s case, this powerful image was somewhat limited by

his perceived need for a particular explicit notational form, particularly

for functions (which required an “ƒ(x) =” prefix) and graphs (requiring a

“y =“ prefix). Algebraic forms without such prefixes (such as 4 - 3x) were

emasculated for Stephen (and for others, including the preservice

teachers), having nowhere to place the required “output” number, and

so failing to support any sort of effective algebraic action. Interestingly,

although Stephen indicated a willingness to see in such an expression

an “implied equation” (solving it as if it read “4 - 3x = 0”), he was unable

to concede that it could as easily possess an “implied y-value”, allowing

both graphical and tabular representations. This was in spite of the fact

that both graph plotter and table of values utilities supported entry in

this simpler expression form as well as the more usual “y =“ form. It can

only be assumed that Stephen’s exposure to this flexible input feature

was too limited to overcome his persistent belief that graphs and

functions require particular algebraic formats. This belief may have

been inadvertently reinforced by the instructional modules of the

computer-based algebra learning environment, which automatically

expressed algebraic objects to be graphed using the “y =“ prefix, even

when this was not present in the displayed form. Thus, clicking on an

expression such as 4 - 3x when encountered within the modules

automatically led to the graphing of the equation y = 4 - 3x.

While Ben and Stephen displayed clear preferences for particular

algebraic images, such thinking was not as clear for the other

participants. Andrea demonstrated strong cross-representational
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facility, transferring meaning across all three representational modes,

but she did not display the explicit “function-machine” imagery which

distinguished Stephen’s thinking. In fact, in the absence of an explicit

preference for graphical thinking (as shown by Ben) or numerical

thinking (as shown by Stephen), Andrea appeared comfortable with the

symbolic form, from which she was readily able to deduce the other

representations. Even the table of values (with its obvious link to the

input-output form of the function-machine image for Stephen) was

related by Andrea to the rule or equation which gave rise to it. Although

logically one might expect that Stephen would display a preference for

the table of values as a mathematical tool, based upon his preference

for numerical imagery, he demonstrated limited use of this mode. In

fact, its main function for Stephen appeared to lie in the display of the

two “sides” of an equation, allowing solution by numerical methods. It is

possible that his preference for an input-output metaphor for algebraic

thinking may have left Stephen with “nowhere else to go” when

confronted by a table of values, whereas for Andrea, such a form

immediately suggested a symbolic rule or equation as its source.

Jane and the two younger student participants appeared to relate most

strongly to the visual forms of algebra, particularly the symbolic

notation by which it was most readily recognised. While Andrea saw

beyond this symbolic form and related it to a relatively rich network of

associations, this facility was all but absent among these younger

respondents. For them, algebra was static - representational in nature

only to the extent that it involved “letters standing for numbers”. While

graphs, ordered pairs and symbols were recognised as the components

of algebra, the links between these elements were all but non-existent.

Certain automated action processes were evident, but these were largely
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unsupported by understanding, and easily confused. The beginnings of

links and relationships between the components of algebra was evident,

but their development is clearly an extended process, even with the

support of computer tools.

The study of algebraic thinking which has been described, then,

suggests several important implications which may impact upon the

use of available software tools. Individuals were shown to interpret

different algebraic forms in a variety of ways. Certain forms displayed

strong and consistent signal characters which readily led to action on

the part of participants, both students and preservice teachers. Most

notable of these were the two forms of equations encountered - y = 2x

-1 and 2x - 1 = x + 7. The former was invariably associated with

graphing, and the majority of participants demonstrated the ability to

deduce useful graphical meanings (most particularly gradient and y-

intercept information) from this algebraic form. The second induced in

all participants an automatic action sequence, leading to the production

of a “solution”. Both students and preservice teachers displayed some

preference for solution by “physical” manipulation of terms, as opposed

to the process of acting equally upon “both sides” of the equation.

While such forms displayed strong signal character, the simple

algebraic expression 4 - 3x induced frustration and confusion among

even the most experienced participants. All expressed a desire to act in

some way upon the expression, but were unable to do so with their

existing repertoire of available mathematical actions. The expression (x

- 1)(x + 1) was not associated with the same reactions, since it

permitted a familiar mathematical action (expansion), and so induced a

sense of closure. Since the majority of algebra software tools take such
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expressions as their principal objects of action, the lack of a strong and

consistent signal character associated with this common form appears

likely to significantly influence the use of computer tools.

Finally, preferred algebraic imagery was found to be of significance for

several participants. While such images as the “function machine” were

found to be flexible and to support cross-representational thinking far

more effectively than a graphical image, it appears that over-reliance

upon any one form may limit the effectiveness of algebraic thinking in

general, and the use of representational software tools in particular.

In order to build a more complete picture of the use of available

software tools by the participants in this study, however, it is necessary

to go beyond considerations of algebraic thinking alone. The beliefs and

attitudes of individuals regarding the learning of algebra must play a

significant role in determining the nature and frequency of such use,

and these must now be examined.
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Seven

Thinking about
 Learning

If the primary units of analysis for the previous chapter were definitions

and images, then this chapter is principally a study of beliefs. As

Chapter Six sought to build up profiles of algebraic thinking by the

various participants, so does this chapter examine aspects of

pedagogical thinking by the students, preservice teachers and by the

researcher. Beliefs and attitudes regarding the learning of mathematics

must feature critically in understanding the responses of individuals to

computer technology as a medium for algebra learning. This chapter

examines beliefs and perceptions concerning:

• how algebra is best learned;

• features of a typical mathematics lesson;

• images and metaphors associated with more and less effective

teaching practice, and

• constructivism in algebra learning.

From this data a second set of individual profiles may be developed

which will further inform our consideration of algebra learning within a

technology-rich environment.
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How Do You Best Learn Algebra?

Throughout the entire data collection process, the question which

became associated with the major theme of the study was the one

which greeted participants each time they entered the computer-based

instructional modules: “How would you describe your beliefs about

algebra and the ways you best learn it?” The responses of the

participants provide valuable insights into both their perceptions of

effective learning and the nature of mathematics itself.

Stephen offered his responses to this key question several times over

the period of the study:

1. I best learn algebra by repeating questions to understand why you do the
question a particular way.

2. [Success in mathematics follows from] an understanding of what you want
to find, how to go about finding the answer, [and] understanding why you
use particular steps and formulas.

3. The best way to learn algebra is to see a diagram of the figure or graph and
working out methods to find answers using rules and formulas.

4. The way I best learn algebra is in seeing graphs or curves of the equation
and being showed how the rule is derived.

5.  A successful maths lesson is when we were allowed to study and look over
our work. The teacher would come around and help us with our problems
and how to set out our answers. A student would help another and show
how he approached the problem.

6. I learn it best by seeing the graph of an equation you have to work out and
by knowing why you have to use a formula.

These comments spanned the two year period of Stephen’s involvement

with the study, from his commencement of Year 11 to the end of his

Year 12 studies. Six critical elements may be discerned as

characterising Stephen’s beliefs about algebra learning:

1. Visualisation (especially using graphs),

2. “Being shown” how to arrive at a solution,

3.  Repetition,

4. “Working out” a method for arriving at an answer,
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5. “Knowing why” you use rules and formulas, and

6. Algebra is associated with memorising rules and formulas, and

finding answers to problems.

The first two elements may be associated with a passive approach to

learning, the second two with a more active involvement. All suggest

common themes which may be observed to greater or lesser extents

across the sample, from students to preservice teachers. In Stephen’s

case, the role of visualisation is clearly a dominant one, occurring as a

repeated theme in several statements. The clear distinction between his

first statement and the subsequent responses suggests a growth in

metacognitive awareness, which probably arises as a direct result of his

involvement in the research program. The regular requests for analysis

of his own thinking about algebra and learning served to make him

aware of his own learning and encouraged him to refine his response.

The similarities of the latter responses suggest that his thinking on this

matter had become relatively stable and that the long term involvement

within a technologically rich learning environment may have done little

to alter his thinking about learning other than to impress upon him the

value of visualisation as a learning tool.

Stephen’s reference to “knowing why” suggests that he perceives

understanding as a central factor contributing to an effective learning

experience. Within the context of his view of algebra as consisting of

formula- and rule-based methods for finding answers to “problems”,

however, his “understanding” may be more instrumental than

relational.
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Finally, the perceived role of the teacher in effective learning is likely to

be significant. Explicitly, successful learning was associated with a

more student-centred learning context, in which the teacher assumed a

supportive role. Throughout Stephen’s responses, however, the teacher

is never far from consideration - as the one who “shows how the rule is

derived”, who provides the reasons for the use of rules and formulas

and, fundamentally, as the primary source of the “problems” by which

algebra itself is defined. A potential conflict may be discerned between

Stephen’s association of successful learning with student-centred

methods and yet his reliance upon the teacher as source of both that

which is to be studied and the ways in which this study may best be

achieved.

Stephen’s peer, Ben, offered the following responses over a similarly

protracted period of involvement within the research program:

1. I best learn algebra by revising the work. I’ve just got to chisel it into my
memory because of the formulas.

2. [Success in working with functions and variables follows from] full
understanding of what you are doing.

3. [Success in coordinate geometry follows from] good visualisation of what
you are working out mathematically. Good understanding of the formulas.

4. I learn [algebra] best by continually just doing algebraic problems, until I
get used to it, and start seeing different methods, different ways to go
about it.

5. [A successful lesson was one in which] the teacher was able to get across
the true mathematics and to help me to fully understand how to answer all
the questions used throughout the lesson. By true mathematics I mean the
substance behind it, why it’s meant to do what it does.

6. [The three most important factors in learning algebra are] understanding,
ability, memory for rules concerning algebra.

Once again, the common themes are those of repetition, understanding

(but within a context of memorisation of rules), visualisation and

teacher dominance. Once again, the teacher is perceived as the source

of knowledge and skills which must be learned. There is an implication,
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too, in the last response that ability is a factor in determining success

in algebra - that some people are naturally better than others.

Andrea offered two comments regarding algebra learning:

1.  The best way to learn algebra is to memorise the equations and also know
their purpose and use.

2. The best way to learn algebra is to learn the basic ideas first then take a
few challenging questions according to the individual’s level.

Present once again are the themes of understanding linked with

memorisation and individual ability as a deciding factor in algebraic

success. The second response, however, suggests some change in

perception over the intervening period since the first. It appears to

reflect elements of the van Hiele stages of learning, which begin with

information and guided orientation, and progress later to free

orientation which might be associated with Andrea’s notion of

challenge. Since these stages of learning provided the basis for the

construction of the algebraic learning environment for this study, it

does seem likely that she has adopted elements through her

involvement with the program. Andrea’s perception of challenge is

notably absent from the views of the other respondents.

Like her conception of algebra, Jane’s view of effective learning

remained stable over the period of the study, centred upon repetition

and memorisation.

1. ...doing lots of questions and examples that are given to me.
2. ...practise and revision.
3. ...revision, learning rules.
4. ...common sense, knowledge, and to use the skills you know.
5. ...you learn [algebra] best by revision, practise.
6. ...revision, practise and study.
7. I find it better when I work with the people around me. I like to have the

time to think about what I am doing.
8. Revision, common sense and practice.
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Jane’s view of algebra learning appears to be largely passive, dependent

upon the teacher, although she acknowledges that she works best in a

social context.

For Tony, the element of innate ability is an immediate one, along with

the now familiar themes of memorisation, understanding and repetition

within a teacher-dependent learning context:

1. I think that some kids can achieve high scores in algebra right away and
some can’t.

2. [Success results from] knowing what the pronumerals and numbers stand
for.

3. Learn all the formulas that go with [algebra].
4. Learning the rules involved and working it out.
5. [The three most important things for success in mathematics are] learning

the rules and the formulas, studying hard and doing all your homework.
6. I best learn algebra by using the computer to show things graphically. This

is better than when teachers blab on and write stuff on the board. The
computer is most helpful in showing us alternate ways to do things and
showing you graphically how to do the sums. The computer is least helpful
when it crashes! When you get something wrong, the computer doesn’t
really help you - it can’t work out what you did wrong. I like using a
computer algebra program because it helps me to see what I have done
wrong after I have done it.

Like Stephen, visualisation is a feature of Tony’s learning of algebra;

like Ben, Tony recognises the advantages of encountering alternative

approaches to concepts and methods. The computer figures strongly in

Tony’s perception of effective learning, reflecting his experience with

algebra software tools. He notes disadvantages as well as advantages in

the use of technology in this context.

Patrick’s experience of algebra learning had largely involved the use of

computer-based concrete manipulatives, and some limited use of

computer algebra software. Like Tony, he sees innate ability as a

significant factor in deciding success or failure in algebra learning, but

he reacts positively to the concrete (visual) approach:
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1. I think it is important to be able to understand algebra to do it.
2. ...it is best to learn it at your own pace because taking it too fast could

ruin your image of algebra.
3. [Success in algebra follows from] trying different kinds and using the

knowledge of those who offer assistance to you.
4. The best way to learn it is not imagery (in your head) but in visual maths,

with objects in front of you.
5. To be successful in algebra you must KNOW what you’re doing and

BELIEVE that you can actually do it. When I used the computer to solve
some equations I didn’t learn anything because the computer did it for me
leaving me only with an answer not the knowledge of how to do it.

6. Algebra is using maths in a different way and it is best learned by using
solid and visual objects.

7. You need to be taught well the first time around or you won’t understand
as well when older. You should have visual objects and you should be good
at numbers.

Patrick offers some unique perspectives, in addition to echoing the

themes already observed. He notes, for example, that the pace of

instruction is a significant factor, and that confidence in your own

abilities influences learning. He observes that skill in numeracy is an

important precursor to algebraic facility.

The view of algebra which emerges from the responses of the six

students in the study is one which is surprisingly consistent.

Successful algebra learning, for all students, is associated with

understanding, but this appears to be in the sense of “knowing what to

do” rather than “knowing why it is done”. This form of understanding

for the students is perceived as resulting from repetition, leading to

memorisation of rules and formulas. While it may result from the efforts

of the student (“working out”) it appears more likely to involve teacher

intervention, in which the student plays a largely passive role (“being

shown”). Associated with the passive role of “being shown” appears to

be strong general reliance upon visualisation and frequent reference to

the graphical representation of algebraic ideas. Although the teacher is

generally recognised as the source of both knowledge and method in

algebra learning, students also commonly make reference to a
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preference for working within a social context, learning through

interaction with their peers.

The preservice teachers appeared to interpret understanding differently

from the students. While the latter group saw it as following from the

learning of rules and formulas, the preservice teachers generally saw

the two as incompatible. For A1, for example:

Algebra and the way it is taught is [sic] currently being debated by educators -
are we teaching algebra effectively or are we taking the easy approach to
teaching algebra by teaching rules and not understanding? I believe
understanding is crucial but in schools we are told that we don’t have time to
explore algebra and we must teach the rules and move on ... Although it might
be easier to just teach the rules in the earlier years it would be more effective
and more beneficial in the long term to encourage and facilitate the students to
develop an understanding of variable and the relationships between variables in
algebra.

A3 points out that “without an understanding of the concept of a

variable, the study of algebra is meaningless and simply becomes the

learning of rules and the manipulation of meaningless expressions”. A6

echoes these sentiments:

Overall, I think that algebra is best learnt when it is not seen as a set of rules. I
think that teachers need to concentrate on the real mathematics involved rather
than blind manipulations. The basis of this is giving proper meaning to variables
and a focus on why different things are able to be done.

The preservice teachers had clearly been exposed to alternative methods

for the teaching of algebra, while the students had only their school

experience to reflect upon. This experience appears to dominate their

perceptions of algebra learning - although the technology-enriched

program of this study attempted to engage the participants in learning

which was meaningful and context-bound, they remain locked in a view

of algebra as a collection of rules and formulas, where success is a

direct result of memorisation and rote learning.
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Aside from their different interpretations of “understanding”, the two

groups (students and preservice teachers) appear to share many

common perceptions regarding effective algebra learning. A2 points out

that algebra learning “is best done by having as many practical

examples and activities as possible, followed by theory and questions. It

must be done in a logical and sequential way or pupils will be lost and

not understand what is going on”. A5 states clearly, “I think students

best learn by gradually doing each section. Some students need to learn

the rules by rote, others learn by using different methods”.  She goes on

to point out the importance of repetition, sequencing and “being

shown”:

I still think a lot of students learn algebra by learning the rule by rote. They
don’t fully understand the reasons for what they do. Personally I think the
students would learn better by being given a thorough explanation and many
worked examples. The students then need to do a lot of practice of what they
have learnt. They should learn one section at a time, so they don’t get confused.
Then as they progress they will be able to add all the skills and rules they have
learnt to solve more complicated problems.

Although the preservice teachers recommend concrete methods and

number patterns for developing algebraic understanding, they appear in

general to reflect traditional values associated with algebra learning -

that success follows from memorisation and repeated exercises. Their

view of learning appears to be strongly teacher-centred, reflecting the

view of the students. Only one of the preservice teachers (A3) mentions

group work, and that is in a limited way (“The ability to work in group

or paired exercises would be advantageous in the early stages of

algebra”). Their understanding of the algebra learning process suggests

a hierarchy of skills, built upon numerical foundations (echoing

Patrick’s comment) and requiring the ability to interpret symbols.
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A1 defines a “successful lesson” as follows:

A lesson is successful when the students understand the content of the lesson
and are able to do the exercises without great difficulty. However, it is hard to
pinpoint what made the lesson successful. I think it basically comes down to a
number of uncontrollable factors:
- the way the teacher explains the examples and the use of the formula/rule,
sometimes the students understand straightaway what the teacher is talking
about and other times what the teacher says goes right over the students’
heads.
- time of day - morning lessons are always more successful than afternoon
lessons and Monday’s lessons are more successful than Friday’s lessons.
- the content area - is it interesting to the students, is it relevant to them?

Even within an increasingly student-centred context, the successful

algebra lesson revolves around the activities of the teacher (A2):

The things that make a lesson successful are good easy to follow explanations,
followed up by a student explanation to see if they are following everything that
is going on. The examples used in demonstrating the examples [sic] are relevant
to the pupils’ level and reinforce the explanation. The examples would show step-
by-step the way the concept works and would be easy to follow. The students
could do these up on the board, as the students often enjoy this. A quick quiz
would show to the teacher if the pupils understand what it is they are meant to
be doing. A discussion on the topic would show what misconceptions the pupils
have and a game on the topic makes the pupils more interested as they think
they are not “doing maths”.

The differences between the two groups appear minimal in comparison

with their similarities. Both groups make specific mention of teacher-

centred methods which involve demonstration, repetition and carefully

sequenced exercises leading to memorisation of skills of manipulation,

generally associated with success within this domain. The common

views of the nature of algebra and the ways in which it may best be

learned span both groups of participants, and appear to suggest the

existence of what might be termed a mathematics learning culture

(where the term “culture” is used in the sense of shared meaning and

experience). The existence of such a phenomenon has significant

implications for the use of computer technology if it is as pervasive and

uniform as it appears. Further evidence as to the existence and nature
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of such a culture may be gained by triangulating the various sources of

data related to algebra learning which this study makes available,

particularly responses to the Constructivist Learning Environment

Scale and the “grand tour” question, “Describe a typical mathematics

lesson”.

A Typical Mathematics Lesson

When asked to describe “a typical mathematics lesson”, the responses

of the various student participants were almost identical - after a

momentary pause, each began to write, confident at last that they were

being asked about something in which they were the experts, about

which they could respond confidently from experience. The various

responses are quoted below, providing as they do valuable insights into

the learning experience which all appeared to share and which, more

than any other group of data in this study, offers convincing evidence

for the existence of a pervasive culture of mathematics learning.

My own response was among the most extensive and suggestive of a

relational level of thinking, as opposed to the largely multistructural

responses of the younger participants.

A typical maths lesson begins with work set by the teacher - perhaps a few
quick review questions, or review of the previous night’s homework. This
‘housekeeping’ is an important part of beginning the lesson, preparing students
for work.

The body of the lesson typically involves the teacher demonstrating some new
concept or technique, and then (after questions from the students) having them
practise this - usually using questions from a textbook. The teacher will usually
move around the class while this deskwork is in progress, assisting, answering
questions and also keeping students on task.

Occasionally, the teacher will call attention back to the front to explain further
some point that may need clarifying, or to set some new work.
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In the last few minutes of the lesson, opportunities are again provided for
questions, homework is set, and students continue with the work or begin the
homework.

For Stephen, the components of the typical lesson are distinct and

unrelated parts which occur within a specified sequence:

A typical maths lesson begins with any problems from homework to be answered
and explained. Then the teacher will show us the new work and explain it. Then
we will be shown a few examples. We will go on with the new work and if we need
any help the teacher will show us what to do.

This same sequential element is present in Jane’s description, although

she makes more mention of physical spatial components:

The teacher begins by writing questions on the board - sometimes general
questions, sometimes related to what we are doing. We answer the questions,
correct them, then we might work on questions out of the textbook or we might
answer questions from the homework. If work is set then the teacher moves
around the class; if not, then she stays out the front. At the end we are set
homework for the night.

Ben responded twice to this item, demonstrating the sequential

multistructural format already seen, and later a more relational level of

thinking about this subject, offering justification for the various

components of his typical lesson.

A student is taught set mathematics from a teacher. It begins with a couple of
warmup questions followed by work we have been doing on a set topic, half of
which is taught and the other half comes from a text book. Then the rest of the
lesson is spent working from our textbook. Then we are given some homework.

It starts with a warmup question based on the topic we are currently studying,
then we continue on our selected topic learning what we need to know, then we
are given homework to help us develop our new skills. The teacher explains the
reasons behind the mathematics involved and helps us to learn the techniques
involved. The work comes out of a textbook.

Although generally more detailed than the student responses, the

replies of the preservice teachers to this question might have been

drawn from the same classroom. A5 offers a succinct account which

effectively captures the recurrent elements of the previous responses:
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A typical Maths lesson is one in which a new concept is taught at the beginning
of the lesson, then it is practised by the students throughout the lesson. The
practice consists of examples from the textbook or a worksheet.

A6 offers a more detailed description, but one easily recognisable as

containing the same themes:

From my experience, a typical maths lesson begins with the teacher explaining
new work or revising previous work. The students generally have the opportunity
to ask questions during this process. After the explanations the students are
usually asked to complete a set of exercises. These exercises typically come from
a text book and involve drill and practice style learning. The students will
usually work individually although some communication is often allowed. The
teaching is almost always ‘chalk and talk’ with the emphasis being on
instruction rather than discovery.

Eleven major descriptors may be identified from the responses to this

aspect of the study, and these are summarised and displayed with their

respective respondents in Table 7.1.

Table 7.1

Descriptors for a Typical Mathematics Lesson

A1 A2 A3 A4 A5 A6 Ben Jane Stephen SMA

Teacher

Explanation

√ √ √ √ √ √ √ √ √

Tchr.

Demonstration

√ √ √ √ √ √ √ √ √

Review / Examples √ √ √ √ √ √ √ √ √

Homework √ √ √ √ √ √

Textbook √ √ √ √ √

Teacher Questions √ √ √ √ √ √ √ √

Student Questions √ √ √

Student Deskwork √ √ √ √ √ √ √ √ √ √

Teacher at front √ √ √ √

Teacher moving √ √

Discipline (“on

task”)

√ √
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There can be no more convincing argument for the existence of a

mathematics learning culture than that presented in these vignettes.

Although some are more detailed than others, all could have been

descriptions of the same mathematics classroom, taught by the same

mathematics teacher. The power of such a culture to influence the

participants on both sides of the desk - teachers as well as students -

must be recognised if the impact of any innovation is to be understood.

This is a culture which is dominated by the influence of the teacher -

each and every description begins with a reference - either direct or

implied - to the actions of the teacher. The active role of the teacher is

strongly contrasted with the passive role of the students, who are

required to work through set exercises and examples - most commonly

from a text book - in order to learn how to answer the “problems” and

“questions” which appear to define the subject area.

A view of mathematics as answer-oriented is significant within the

context of computer tools which appear to be of most use within an

open-ended exploratory role - a role which appears to have little or no

value within a culture dominated by the finding of a predefined

“answer” through a specified sequence of steps involving some

manipulation of rules and formulas. This pedagogic role of technology is

explored in greater detail in the following chapter; the nature of the

mathematics learning culture is examined more closely now through

consideration of images and metaphors associated with more and less

effective teaching.
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Pedagogical Images and Attitudes

This research activity involved participants in the verbal description of a

series of “teacher roles”, followed by their categorisation into those

associated with more and less effective teaching. Associated as it was

specifically with teaching, not all participants were required to complete

this task; all Group A preservice teachers provided responses, as did

the students Ben and Tony, and myself, as researcher.  Table 7.2

summarises those roles considered to be associated with successful

teaching (√) and those associated with unsuccessful teaching (x) for

each respondent.

Table 7.2

Successful and Unsuccessful Teacher Roles

Teacher as... SMA Ben Tony A1 A2 A3 A4 A5 A6

Entertainer √ √ √ √ √ √ √ √

Police Officer x x x √ √ x √ x √ √ x

Gardener √ √ √ √ √ √ √

Captain of the
Ship

√ √ √ x √ √ √

Travel Agent √ √ √ √ √ √ x √

Social
Secretary

x x x x x x

Tour Guide √ √ √ x √ √ √ √ x x

Administrator √ x √ x √ √ x √ x √

‘The Boss’ √ √ x x x √ x x √ x

Other?
student

Diving
instru

ct

Couns-
ellor

Politic
-ian

Responses to this task were varied, some participants recognising that

certain roles may have both positive and negative associations with
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regard to teaching. Generally, however, those roles most associated with

discipline and authority (Police Officer, Captain of the Ship and ‘The

Boss’) were perceived as less successful than those which involved

making the learning interesting (Entertainer and Travel Agent) and

guiding rather than forcing the learners (Gardener).

Participants’ own categories also proved revealing of their perceptions of

teaching and learning. Ben’s “student” role (“no-one knows everything

and they are still learning”) appeared as a negative response to teacher

authority, while Tony’s “diving instructor” appears relevant in a context

of mathematics as a specific set of skills to be learned.  For A2, “the

counsellor is the person who the pupils can turn to in times of crisis

and is one who can offer solutions to their problems. The counsellor

shows how to deal with situations effectively”. Such a caring view of

teaching appears not to be adequately covered by the other roles, and

implies a duty of care associated with teaching beyond that of simply

imparting knowledge and skills.  The “politician” role described by A4

related to the public nature of teaching - “A teacher like a politician

must remember that they are always in the public eye and must act

accordingly: a teacher is a role model in and out of the class”. As with

the counsellor, this view of teaching extends beyond pedagogical

responsibilities.

Once more we find that the various participants appear to share more

common views than differences. The teacher is recognised as the critical

factor in mathematics learning and, although some resentment is

evident related to abuse of authority (“a teacher... should not be a

gestapo-type disciplinarian” (A4) and “teacher abusing authority given
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to them” (Ben)), the effective teacher is nonetheless one who is “in

charge” and responsible for student learning.

The use of images and metaphors associated with teaching appeared to

induce in some respondents emotive responses which touched upon

attitudes towards both teaching and learning, and mathematics itself.

These were particularly evident in association with issues of discipline

and control. Attitudes to algebra learning were recorded using a simple

seven item Likert-scale task (Appendix C), and the responses from the

two groups were averaged and graphed in Figure 7.1.

Figure 7.1: Attitudes to Algebra: Comparison of averaged

responses from student teachers and students.
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Attitudes to Algebra
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Almost all responses indicated positive attitudes towards algebra.

Visually, bars below a score of 3.00 may be considered positive. The

major exception to this tendency occurred on the last item - both

groups considered algebra to be more useful than useless, with the
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preservice teachers being more positive in this regard than the

students. This supports the earlier data in which applications of algebra

were virtually unknown and its primary purpose is seen as supporting

further study of mathematics. Students saw algebra as more work than

fun, while student teachers perceived of it as more like rules than

puzzles. Overall, the students appeared to display more positive

attitudes to algebra than the preservice teachers, but with few overall

differences between the two groups.

Figure 7.2: Student Attitudes to Algebra
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Among the students themselves, there is again general agreement

regarding perceptions of algebra as more positive than negative - more

“challenging” than “frightening”, more “sensible” than “nonsense”. Most

negative of the older students is Ben (S2) who finds algebra more

boring, less sensible and less useful than any of his older peers. Most

positive is Andrea, who appears to both enjoy algebra and find it

interesting, but at the same time recognises it as both challenging and
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frightening. At the time of completing this task, Tony’s attitudes

towards mathematics were quite negative, although there was evidence

of a more positive swing over the period of the study. Patrick, not

surprisingly, saw algebra strongly in terms of puzzles and more likely

to be nonsense than sensible.

These attitudinal responses help to place the various perceptions of

both mathematical and pedagogical aspects of algebra within context

for the different participants. They further reinforce the detailed profiles

being constructed regarding elements of thinking and action which may

influence their use of available computer tools.

Constructivism in Algebra Learning

The most detailed profile data available concerning pedagogical thinking

by the respondents was that derived from the version of the

Constructivist Learning Environment Scale (CLES) adapted for use in

this study. Participants were asked to choose those responses which

they would most prefer when learning algebra. The twenty-eight items of

the scale represented four major groupings characterised by the

authors as representing significant aspects of constructivist thinking

and practise - autonomy, negotiation, prior knowledge and student-

centredness (Appendix B provides a complete listing of these items).

Some aspects of these factors have already been identified with regard

to the student and preservice teacher participants. The individual

responses to the items of this scale offer a further valuable triangulation

method by which both validity and reliability of the associated data may

be better judged.
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Table 7.3

Responses of Group A student teachers, students and researcher to the

Constructivist Learning Environment Scale

A1 A2 A3 A4 A5 A6 Andrea Ben Jane Stephen Tony Patrick SMA

N1 + + + + + +

+
+

(N5) + + + + —

+
+ — +

+
+ + +

(N9)

+
+ +

+
+ + + +

+
+ + +

+
+ + +

N13 + +

+
+ + + +

+
+ + + + + +

N17 + + + — + + + + +

N21 + + + — + + + + +

(N25) + + +

+
+ + + +

+
+ + + —

+
+

PK2 +

+
+

+
+ + +

+
+ + +

PK6 + + + — +

+
+ + + + + +

(PK10)

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

PK14 + +

+
+ + + + — + +

+
+

PK18 + +

+
+

+
+

+
+ + + + +

+
+

+
+ +

(PK22)

+
+ +

——

+

+
+

+
+ — +

+
+ +

(PK26)

+
+ +

+
+

+
+

+
+

+
+ +

+
+ +

+
+

+
+ +

A3 + + + — +

+
+ +

+
+

+
+

A7 —

+
+ + — + —

+
+ +

A11 + — —

+
+ +

A15 — + + + + + + + +

A19

+
+ — + + + — + +

A23 + — + + + +

A27 — + — — + + +

(SC4) — —

——

— + — —

(SC8) + — + — — + +

(SC12) —

——

— +

——

+ —

(SC16) + — — —

—
— — — —

(SC20) — —

—— —
— — — —

—
—

(SC24) — — +

—
— + — — — —

(SC28) — —

—— —
— — —

—
—

—
—

KEY: Item numbers are prefixed with the scale type (N: Negotiation, PK: Prior
Knowledge, A: Autonomy and SC: Student centred). ++ indicates a strong positive
response, + a positive response, — denotes a negative response, — — a strong
negative response and neutral responses are blank.
NEGATIVE items from the scale are parenthesised; responses to these items were
reversed for purposes of analysis and presentation.
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Table 7.3 provides a visual display of participant responses to the CLES

items which reveals an interesting pattern of distribution. All items

associated with the categories of negotiation and prior knowledge

drew almost entirely positive responses; items associated with

autonomy were largely neutral, and the student-centred items drew

largely negative responses from all participants. This is supportive of

the findings already discussed relating to pedagogical thinking by the

respondents: algebra learning is perceived to be (and in this case,

preferred to be) a teacher-dominated activity, in which student

autonomy is not valued highly as a factor associated with success; in

general, while most participants prefer to learn socially (the majority of

negotiation items reflect this factor), prior knowledge is also

considered an important feature, associated with rote learning and

memorisation of rules and formulas already noted. Once more, strong

evidence exists for a high level of uniformity across all respondents,

suggestive of the common culture of mathematics learning which has

been proposed.

Those items which drew the most uniform responses are italicised in

the table. One item (PK10) drew the same strongly positive response

from all participants: When I do algebra, I would prefer there to be NOT

enough time to really think. The negative items (such as this one) had

their responses reversed in order that high scores be associated with

positive responses and low scores with negative responses. In this case,

every respondent chose the same option - never.

Other items which drew almost entirely positive responses were:

N9: When I do algebra, I would prefer NOT to be aware of other students’

ideas (Negative item - score reversed).
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N13: When I do algebra, I would prefer to talk with other students about

the most sensible way of solving a problem.

PK26: When I do algebra, I would prefer that the things I learn about are

NOT really interesting.

Each of these strong responses related to a preference by the majority of

participants for social interaction as a part of the learning process and

a natural desire to be interested and not to be rushed and confused in

learning.

Items which drew the most strongly non-constructivist responses from

most participants were all classified as measuring “student-

centredness”:

SC4: When I do algebra, I would prefer that the teacher gives me

problems to investigate.

SC16: When I do algebra, I would prefer that the teacher expects me to

remember things I learned in past lessons.

SC20: When I do algebra, I would prefer to learn the teacher’s method for

doing investigations.

SC28: When I do algebra, I would prefer that the teacher shows me the

correct method for solving problems.

These items paint a clear picture which reinforces the perception of

algebra learning already encountered throughout the data. Both

students and preservice teachers indicate a preference for an algebra

learning environment in which the teacher is the source of both content

and method, in which there is a “correct method for solving problems”

and that this is the teacher’s method. This is a learning environment in

which the responsibility for learning rests squarely upon the shoulders
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of the teacher, and in which students are passive participants, waiting

to be told and shown what to do.

Differences between the various individuals are not great. Of the

students, Ben, Tony and Patrick emerge as rating negotiation very

highly, with Andrea, Jane and, to a lesser extent, Stephen suggesting a

tendency to rely less upon their peers. At the same time, Andrea and

Tony indicate the strongest tendency towards teacher-dependence from

their responses to the student-centred items. Only three respondents

(A4, Patrick and myself) indicated a strong tendency towards

autonomy; most others gave neutral responses to these items.

On item A19 (When I do algebra, I would prefer that I decide if my

solutions make sense), most students responded in a mildly positive

way, while the preservice teachers gave a largely negative response.

Their greater mathematical experience had, perhaps, reinforced for

them that their judgements are not to be trusted, allowing little room

for confidence in their answers. Once again, the students’ responsibility

for learning is abdicated in favour of external sources of authority -

presumably teacher and textbook.

The picture we have painted of the current state of algebra learning is

not an optimistic one in terms of constructivist principles. There is clear

and diverse evidence for the existence of a culture of mathematics

learning within this domain which appears to exist across all

participants in this study. It is a culture which values rote learning and

memorisation of rules and formulas, where understanding is largely

instrumental and in which students prefer to be passive recipients of

knowledge and procedures transmitted through teacher and textbook.
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There appears to be little motivation for independent study or

exploration and students appear unlikely to value or even to trust their

own answers to the external “problems” and “questions” by which this

domain is defined.

An Overview of Pedagogical Thinking

The learning of algebra, for both students and preservice teachers in

this study, is a teacher-dominated activity. It is most often associated

with memorisation of rules and formulas through repetition and,

subsequently, evaluated by reference to instrumental rather than

relational measures of understanding. Mathematics (and algebra in

particular) is associated with a fixed body of knowledge and an

associated collection of actions and sequential processes which are

used to arrive at a predetermined solution through a well-defined series

of steps. While algebra is strongly associated with finding answers to

problems, these problems are unlikely to relate to non-mathematical

areas or real-life concerns; they are largely provided by teacher and

textbook. Instruction in algebra is linear and sequential, as students

seek to replicate and automate the skills and procedures by which the

subject is most readily recognised.

Within this rigid framework, individual differences were observed in

relation to a number of variables. Perceived responsibility for learning

was associated with active and passive conceptions of the learning of

algebra, with students such as Stephen and Andrea displaying a

preference for “working out” solutions, while Ben and Jane preferred to

“be shown”. Across all participants, however, the onus of responsibility

was seen to lie with the teacher, who is expected to “show” the students
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“how to do it” and to manage critical learning variables such as

sequencing and pace. While teachers might be expected to try to make

the learning experience relevant and interesting, their primary

responsibility was to lead and enforce learning, even though this was

sometimes associated with abuse of authority. Attitudes to algebra

varied widely for the student participants, with Ben and Tony

associated with the most negative attitudes, and Andrea displaying the

most consistently positive responses. Stephen was the only student who

rated algebra as more easy than difficult; all other responses were

neutral in this regard, suggesting limited confidence in their own

abilities.

With regard to constructivist practices and beliefs, the preservice

teachers were more strongly positive than the students in relation to

both negotiation and prior knowledge scales. Ben and Tony again stand

out, rating these factors more highly than their student peers. Least

student-centred of the students were Andrea and Tony, although overall

responses suggested a preference for teacher-dominance. Patrick’s

response to the autonomy items (positive) and the student-centred

items (neutral) distinguished him from his peers: it seems probable that

his limited experience of formal algebra learning situations had failed to

initiate him into the dominant culture: he expected that he should be

responsible for his own learning, rather than the teacher. In other

respects, responses were strikingly uniform, and such a powerful

culture must be a clear influence upon perceptions of the role of

technology within algebra learning situations.
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Eight

Using the Tools

The deliberate and goal-directed use of tools has always been an

essential feature of human activity and a means by which we may most

readily be distinguished from animal species. As means of enhancing,

not only physical, but cognitive activity, tool use becomes a defining

feature of that which is most uniquely human. Vygotsky begins his

book, Thought and Language (1962) with a quote (in Latin) from Francis

Bacon, broadly translated by Bruner (1986) as:

Neither hand nor mind alone, left to itself, would amount to much. And what are
these additional [tools] that perfect them? (p. 72)

Vygotsky is referring here to thought and language and the cognitive

aids used to support these. Most importantly, language may be

perceived as a cognitive tool which aids thinking (Vygotsky, 1978):

Children solve practical tasks with the help of their speech, as well as their eyes
and hands. (p. 86)

As described by Bruner, “language is... a way of sorting out one’s

thoughts about things” (Bruner, 1986, p. 72). To Vygotsky, language is

an example of a sign system. Sign systems include spoken and written

language, and the number and symbol systems of mathematics - all

used as tools to aid thinking. In fact, for Vygotsky, it was this use of

sign systems which distinguished humans from animals (Vygotsky,

1978):
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Comparative analysis shows that such activity is absent from even the highest
species of animals; we believe that these sign operations are the product of
specific conditions of social development. (p. 39)

The use of tools serves to extend and enhance human capability,

making possible that which otherwise may have been too difficult. At

the same time, effective tool use requires a certain level of skill, both

with regard to the use of the tool itself, and the object to be acted upon.

In the case of the mathematical software tools considered here, effective

use requires not only proficiency with regard to the computer

application, but also prerequisite mathematical knowledge and skill.

Having access to a computer algebra package, for example, will not

permit students to act mathematically and meaningfully far beyond

their current capabilities. Nor will they be in a position to choose a tool

if they are unfamiliar with that tool or with the mathematical process in

question.

Vygotsky’s Zone of Proximal Development is particularly relevant in

this context. While external factors (such as computer tools) may serve

to extend and enhance individual functioning, the limits to which this

will occur may be expected to be well-defined by the current state of the

individual and by the nature and limitations of the tool. Computer tools

for algebra serve two fundamental purposes - they permit

representation and manipulation of algebraic ideas. While their

representational capabilities are readily recognised as powerful and

unique, the latter function appears to cross over boundaries set by

centuries of mathematical tradition.
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The tools used to enhance and enable mathematical activity have long

been dominated by the sign and symbol systems by which this

discipline is most readily recognised, aided externally by little more

than pen, paper and, in certain circumstances, restricted access to

geometrical tools. Mathematics as a purely cognitive activity has always

been highly prized and nowhere more so than in schools. The advent of

calculator and computer into mathematics learning has been met with

a cautious and grudging acceptance, and the use of technology

permitted only within very restricted boundaries.

This chapter examines the ways in which the participants engaged in

the use of the various computer tools available to them within the

confines of the study. It describes the context of this use, and the

subsequent responses and reflections of the various participants. It

seeks to make explicit those features of mathematical tool use which

were most significant to the students and preservice teachers, and

consequently to identify factors which may have served as both

impediments and enhancements in their learning of algebra within a

technology-rich environment. When considered within the context of the

analyses of algebraic and pedagogical thinking described previously,

this chapter sets the scene for the development of the grounded theory

of mathematical software use which follows.

Frequency of Tool Use

The individuals who participated in this study did so over varying

periods of time, and engaged in a range of different activities.

Consequently, a measure of the extent of their interaction with the

available software tools must take this variance into account. A simple
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gauge as to the extent of the contribution of each individual to the data

record may be derived from the number of text units for each, as

determined by the qualitative analysis program, NUD•IST. Each text

unit is essentially a single line of text, with up to eighty characters per

line. NUD•IST automatically processes each document into such units,

and numbers each for ease of analysis. A visual display of this measure

is provided in Figure 8.1 (the numerical data for each of the graphs in

this chapter is available in Appendix F). It is clear from this display that

Stephen and Tony provided the most detailed and extensive

information, and the Group B preservice teachers the shortest term of

interaction. Much of the “bulk” of the research record may be attributed

to the various research questions and tasks designed to provide the

background information already examined. Actual tool use must be

considered within this context.

FIGURE 8.1: Number of Text Units for Participants
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The frequency of tool use in this study is measured in terms of what are

labelled here as incidents. An incident of tool use involves the

deliberate selection of a particular software application for a

mathematical or pedagogical purpose. Incidents do not include
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occasions when a tool is selected but not acted upon, as occurred when

some respondents were familiarising themselves with the program. The

number of incidents ranged from 4 to 63, and are displayed in Figure

8.2. Relative to the number of text units for each respondent, however,

the incidence of tool use across the participants is more clearly

conveyed in Figure 8.3. While the students provide the most frequent

examples of tools use in terms of raw numbers of incidents (as shown in

Figure 8.2), the preservice teachers in Group B used the tools far more

frequently when their more limited involvement is compensated for. Of

the students, Ben, Andrea and Stephen were the most frequent users of

available tools.

Figure 8.2: Frequency of Tool Use across Participants
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Figure 8.3: Relative Frequency of Tool Use across Participants

(Percentage of total text units)
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When this tool use is broken down into major software types (computer

algebra, graph plotter and table of values), further detail emerges

(Figure 8.4). The use of computer algebra tools among the Group B

preservice teachers was minimal, even though this had been

particularly emphasised in the introduction to the units of work (Group

A did not have access to these tools). Among the students computer

algebra use was far more common, but this occurred in the presence of

the researcher who had made such use a particular priority for them. A

similar emphasis upon the use of the table of values utility resulted in

equally diverse results. For the students, the table of values was

generally far less utilised than either graph plotter or computer algebra

tool (although Andrea appeared to use graphs and tables equally) while
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preservice teachers appeared divided across the two groups - half

showing some preference for the table of values over the graph plotter,

and the rest displaying a strong preference for the graph plotter.

Figure 8.4: Frequency of Use of Tool Types
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These varied patterns of usage across the participants will be examined

in terms of two critical variables: the effects of mathematical content

and process. The first considers the curricular context of the activity:

whether participants were studying “Beginning Algebra” or “Calculus”,

for example, and the nature of the tool use within this framework. The

second considers the nature of the mathematical activities which

accompanied and directed the use of available tools - which activities

appeared to be most often associated with the use of computer tools?

Additionally, the effects of the tool use will be examined through
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consideration of the respondents’ own assessments - why they used the

tools and how effective they found them to be.

The Curricular Context

Table 8.1 summarises the breakdown of tool use in relation to

curricular content areas for the various participants. “A” represents the

use of an “algebra” tool (Theorist, MathMaster or CoCoA), “G” represents

use of a graph plotter, “T” stands for “table of values” and “√” indicates

that the curricular topic was encountered but no software tools were

used. It is clear from the table that the category labelled “Problems” was

that most extensively encountered across all but the youngest

participants. This grouping includes, not only those questions

contained within the module, Something to Think About, but also open-

ended and student-generated mathematical tasks which occurred

frequently throughout the interactions. A clear focus for the group A

preservice teachers was upon “early algebra” - the modules Beginning

Algebra and Equations and Problem Solving, while the Group B

preservice teachers were more engaged in problem-based activities. The

breadth of curricular coverage by the various students may also be

observed from the table.

Several features may be noted from this display. The use of the table of

values was most common among the early algebra modules, where it

represented an explicit priority. Similarly, the graph plotter was a

central feature of the Curve Sketching module. Of the students, once

again Andrea may be observed to give equal preference to the graphical

and tabular representations; in contrast, Ben and Jane display a strong

preference for the graphical representation, a preference shared by the
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Group A preservice teachers, as evident in their approach to the

mathematical problems they encountered. The Group B participants,

however, appeared to make more effective use of the Table of Values in

their problem-solving, but reverted to the graph plotter exclusively

within the curricular contexts which they encountered.

Table 8.1

Tool Use and Curricular Content

Beg.

Alg

Eqns Coord

Geom

Curve

Sketch

Comp

the Sq

Inv.

Fns

Calc. Review Probs.

Andrea (S1) GT GT √ AGT AGT AGT

Ben (S2) √ G AG G AG √ AGT

Jane (S3) √ √ AG AG G A A

Stephen(S4) √ AG AGT AGT A AT AG

Tony (S5) T AGT G √

Patrick (S6) AGT A

SMA (T1) AGT

A1 GT T G

A2 GT GT G

A3 GT G

A4 T GT √ G

A5 GT GT G

A6 G

B1 G G GT

B2 G G

B3 AGT AG GT

B4 √ G AGT

B5 G G

B6 GT AGT

The categories of Problems and Reviews provide the clearest insight

into patterns of preferred tool use. Within several content-based

Page 270



Learning to Use New Tools Using the Tools

modules, the majority of tool encounters were prompted explicitly. The

focus within the Equations module, for example, was upon versatile

thinking about equations, and users were prompted to access both

graphs and tables specifically, and computer algebra if it was available.

Within Curve Sketching, the graph plotter was the tool of choice. Use of

other tools (as demonstrated by Andrea, for example) suggests initiative

and cross-representational facility. Similarly, the use of tools within the

Review modules was at the option of the user, and further

demonstrates the extent to which the various participants had accepted

the use of the computer tools as part of their mathematical learning

experience. Ben, for example, worked through several review modules,

and (although prompted at various points by the researcher) chose not

to use any available tools. Andrea, on the other hand, displayed a

willingness and, indeed, enthusiasm for the use of the tools which was

unique among the participants. Although Stephen made effective use of

a range of tools on various occasions, he displayed, like Ben, a

reluctance to avail himself of their support, appearing to see it as

fundamentally incompatible with his view of mathematics learning.

Ben notes, for example, that “I find most of maths OK - I can just bang

it out, but when I don’t know where something comes from or why it

works I can’t remember it”. Ben was referring specifically in this case to

rules such as the derivative of the natural logarithm of x being 1/x. He

goes on to comment,

Computers help me to visualise the question being asked. It also presents
different methods to answering questions, e.g. if you didn’t know the
substitution or elimination method it can alter a question and make it easier to
understand and easier to work out.
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Ben attributes the active role in this encounter to the computer, which

“presents” different methods and can “alter a question”. In fact, he

appears to be placing the computer tool in place of the teacher or tutor,

who is expected to perform these functions, allowing him to adopt a

passive role in his own learning. This passive role is further emphasised

by Ben’s reliance upon visualisation in his mathematics learning, in

which he can simply “be shown” what to do and how to do it.

Seeing the graph it verified my result - I am now 100% sure that 6 2/3  is the
maximum and greatest speed is 4000/27.

[I used the table of values] to verify my results. Yes it was effective - it made me
more confident of my answer... It was effective but I always find the graph more
helpful - I like to visualise.

The “functions of motion” model was helpful to visualise velocity over time - it’s
hard to picture when it’s all just numbers.

[I used the table of values] to compare two functions. It wasn’t effective because I
didn’t pay any attention to it.

Ben used the computer primarily as a tool for verification of results

which he had already obtained in most cases by traditional methods.

While this is indeed a powerful role for algebra software tools, it is also

an extremely limiting one. It places the learning emphasis firmly upon

traditional methods, and the computer as an “optional extra”. As a

purpose of tool use, verification may be contrasted with exploration,

with its implications of enquiry and student-initiated mathematical

activity. Ben’s comments suggest, too, a limitation of the tabular

representation. While the graphical image is global and immediate,

conveying information in an intuitive visual form, the table of values

presents a relatively large amount of information in numerical form,

which is more difficult to process and interpret. As Ben noted, if the

user is not “paying attention”, tabular information is easily overlooked.

Ben’s passive and visual approach to algebra learning would appear to
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work against effective use of tools such as the table of values, which

require a more active analytical approach.

This distinction between visual and analytical use of computer tools

appears significant in terms of understanding the preferences for

different tools. While the graph plotter offers a fundamentally visual

representation (in both the van Hiele sense and that of the SOLO ikonic

mode of thinking), the table of values is essentially analytical, requiring

quite complex information to be processed serially. This is not to imply

that each tool cannot be used in the other mode. It was for this reason

that the graph plotter developed for the study was enhanced to allow

the coordinates of points to be displayed when the mouse is moved

across the graph space. In particular, if a function has been graphed,

the particular coordinates of the graph may be “traced” out using this

feature, encouraging and supporting an analytical view of the functional

information. Similarly, using the table of values to compare two

functions allows an immediate visual response by the user as to

whether the functions are identical or not. Stephen observes this

feature when he notes:

I used the table of values to compare two possible answers for a multiple
answer question. It was effective as it showed the different results that each
answer could obtain and how different the answers were.

In fact, for purposes of comparison, Stephen preferred the tabular

representation to the graphical.

I found the table of values most convincing; the graphs were helpful but not
100% sure ... To see what set of numbers were less than 5. Yes it was effective in
doing this - probably more so than the graph since it just said true or false.
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Stephen observed that the computer extended his mathematical

competence but, like Ben, appears to value more his own ability to work

unaided.

We used the algebra tool to graph, differentiate and to find the minimum value of
the question. This was effective as it showed the steps to use and in what order
to find the answer. There were a couple of things I could not have done like
factorising the large equations and finding the final answer in differentiating. To
see the graph helped me to understand the answer better.

 Jane, too, observed that the computer algebra tool extended her

mathematical abilities.

[I used the computer algebra tool] to substitute into polynomials, solve
simultaneous equations. [It] helped me to solve the problems that I couldn’t do with
pen and paper. I felt strange because I haven’t used it before but I wouldn’t mind
using it again.

I used computer algebra for questions involving algebra and fractions and surds.
We were simplifying and substituting and solving complicated equations. I found
it to be helpful because it helped me to work out the questions. I think it will
help me next time I get a question like that because I could see the steps
involved and I feel I understand them better now.

Like Stephen, Jane points to another significant property of tool use in

this context - the computer algebra tools made the mathematical

process explicit. These were not programs which simply produced an

answer; rather they involved the user in developing the solution, using

their mathematical skills, and this feature was considered

advantageous by the students. Ben and Stephen have already been

noted as preferring to see alternative approaches to solutions, a

further advantage perceived in the use of such tools (although subject

to the intervention of the tutor).

Andrea reiterates several of these features of tool use when she notes

that “we used [computer algebra] for recognising different types of

equations and graphs, coordinate geometry and their uses. It was

Page 274



Learning to Use New Tools Using the Tools

effective realising that there was more than one way to look at an

equation”.

At the same time, effective use of computer tools is limited by, among

other things, the zone of proximal development of the user. The

manipulative facility of computer tools is insufficient as a basis for

understanding. As Patrick observed,

When I used the computer to solve some equations I didn’t learn anything
because the computer did it for me, leaving me only with an answer, not the
knowledge of how to do it.

Certain critical properties of tool use may be recognised at this stage.

These include depth (visual or analytical), purpose (verification or

exploration), breadth (the extent to which alternative approaches are

available) and process (the extent to which the mathematical process is

made explicit). Greater detail may be gained by consideration now of the

relationship between tool use and mathematical activity.

The Mathematical Context

The most common mathematical actions associated with tool use

involved either representation or manipulation. The latter involves

algebraic activities traditionally performed using pen and paper, but

now available using computer tools, such as Theorist and MathMaster.

Ten such actions were identified as occurring most frequently:

• Simplify • Expand

• Substitute • Factor

• Solve linear equations • Evaluate

• Solve non-linear equations • Differentiate

• Solve simultaneous equations • Integrate
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Table 8.2

Tool Use and Mathematical Context

Simplify Subst. Solve

Linear

Solve

Non-L

Solve

Simul.

Expand Factor Evaluate Calculus

Andrea (S1) A A AT A A A A

Ben (S2) A A AT A AG A A G A

Jane (S3) A A AGT A G A A

Stephen(S4) A A T A A A A

Tony (S5) A A AT T A A

Patrick (S6) A A A A G

SMA (T1) A A AGT A A

A1 GT GT GT

A2 GT GT

A3 GT T

A4 GT T

A5 GT T

A6

B1 G

B2 G G G

B3 GT G AGT G

B4 GT A A

B5 G G

B6 T G

Table 8.2 displays the tool use by the various participants which

accompanied these mathematical actions.  The use of multiple

representations for equation solving was common for linear equations

(since it occurred most frequently within the curricular context of the

instructional modules, which required such use), but rare for non-

linear functions (which formed the basis for several of the problems

encountered). Similarly, the use of the graph plotter as a tool for

factorising and calculus by several of the Group B preservice teachers

was indicative of a high level of mathematical and technological

sophistication - they were using the tool in inventive and strategic ways.

Page 276



Learning to Use New Tools Using the Tools

This notion of strategic tool use has already been identified as central

to the concerns of this study. Such use is defined to be deliberate, goal-

directed and insightful, and may be recognised as frequently versatile

(involving the use of a variety of representations), active, analytical and

displaying a repertoire of available and appropriate mathematical

strategies. While my own use of the mathematical tools might be

expected to reflect characteristics of strategic use, the evidence of

Tables 8.1 and 8.2 suggests that Andrea, Stephen and several of the

Group B preservice teachers may well be considered in this light. In

terms of the curricular context, it appears likely that strategic use of the

software tools may be limited to open-ended problem-solving situations,

where the user must display initiative and some measure of

inventiveness, rather than those content-based activities where the

path to follow is largely predetermined.

Figure 8.5 provides a detailed breakdown of the pattern of mathematical

use by the students of the computer algebra tool, Theorist. Because of

its simple and intuitive interface and broad mathematical functionality,

this was the preferred algebra tool for the project, and that most

frequently used by the students. The most frequent mathematical

actions for which the students used computer algebra were

substitution, simplification, solving linear equations and graphing,

although the pattern was different for each participant. These results

are not intended to generalise beyond this sample, dependent as they

are upon the particular focus and tasks posed within the study. In this

context, however, they provide a valuable overview of frequency of use

of the various mathematical capabilities of the program.
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Figure 8.5:  Frequency of use of mathematical functions of Theorist

by students and researcher
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For Andrea, the principal computer algebra activities were simplifying

and expanding, with much less frequent use for factorising,

substituting, solving and graphing. Since she also made quite extensive

use of both graph plotter and table of values, this suggests that she was

not dependent upon the algebra tool, but used it to complement the

other available tools. Consider the following excerpts from Andrea’s text

record:

*************************
Describe the difference between k*abs(x) and abs(kx) for constant k?

For  K*abs(x) the question is asking the absolute value of x the times by K
but abs(kX) is asking for the absolute value of kx,.  If K is a -ve
number and was inside the function i.e. abs
*************************
Table : -4abs(x)  :   5:05:24 PM
129 seconds
*************************
Comment: 5:07:55 PM
For k*abs(x) and abs(kx):  If k≥0 then k*abs(x)= abs(kx) if k<0 then
k*abs(x) would be the exact reflection of abs(kx) i.e. abs(-4x)=4x but
-4abs(x)=-4x => -abs(kx) = k*abs(x).  Because k is negative, the RHS will
be a negative graph.
*************************
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When confronted by a symbolic problem, Andrea turned to the table of

values in order to consider it in numerical terms, which had more

meaning for her than the symbols. By considering a single case (when k

= 4) Andrea compared the two functions 4abs(x) and abs(4x), and then

generalised from that. Although she used the table of values as her tool,

she interpreted the tabular and symbolic results in graphical terms, as

“reflection” and “negative graph”. This is suggestive of strong cross-

representational links. Her tutor suggested that she work through the

section of the Curve Sketching module which dealt with the absolute

value function in order to clarify some of her uncertainties in this

regard.

At this point, Andrea encountered the definition of absolute value as

abs(x) = √(x2). This was unfamiliar to her, and it was suggested that she

investigate further. Her attention was also drawn to the possible

distinction between √(x2) and (√x)2, in light of her previous

consideration of k*abs(x) and abs(k*x). To this end, she chose the

MathPalette, entered the equation √(x2) = (√x)2, and engaged in actions

clearly suggestive of strategic software use.

* MathPalette© 12/9/94 4:36:32 PM
Table: 4:42:17 PM
55 seconds
Table:  sqrt(x ^ ( 2)) = ( sqrt(x)) ^ ( 2) : 4:42:19 PM
*************************
Comment: 4:43:54 PM
The two functions are equal when x >= 0,and are not equal when x < 0.
When x >=0 then the values for x, y1 and y2 are all the same.
*************************
function2  :  √(x^2)
function1  :  [√(x)]^2
*************************
Comment: 4:46:25 PM
So when you square a number and then square root it, it becomes the
positive original number.
*************************
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Andrea offers an hypothesis, based upon her reflections upon the table

of values result. She then turns to the graph plotter to further validate

this conjecture.

HyperGraph : 4:48:00 PM
95 seconds
Function: (sqrt(x))^2
4:48:39 PM
*************************
Comment: 4:49:27 PM
So the absolute value of x is the squared square root: abs(x) = √(x^2)
true for all values of x,while [√(x)]^2 = abs(x) when x ≥ 0.
*************************
Comment: 4:51:48 PM
I expected √(x^2) to be a parabola, because from the table of values,
they were symmetrical.
*************************

Note here that Andrea’s visual image derived from the table of values

had been incorrect. She had been misled by the presence of the

exponent to expect a parabolic shape. Viewing the graph corrected this

misconception. While this could have involved simply a surface viewing

of the graph, Andrea analysed the graphical result in light of the

symbolic form and was able to appreciate why the shape of the graph

was linear rather than parabolic.

At this stage, Andrea was asked to consider an example of an equation

involving the absolute value function. She turned to the graph plotter

and observed the graphs of the two functions which made up the

equation. Unsure as to whether she had found all possible solutions,

Andrea then selected the computer algebra tool and used it to solve the

equation symbolically.

MathPalette4:55:46 PM
7 seconds
HyperGraph :  abs(2* x - 3) = x + 5 : 4:56:50 PM
 abs(2* x - 3) = x + 5
*************************
Comment: 4:58:43 PM
My confidence at this stage is about 90%.  -2/3 I am 100% sure.
*************************
Algebra Tool 4:59:26 PM
43 seconds
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Theorist  Student Edition :  abs(2* x - 3) = x + 5 : 4:59:26 PM

(2*x-3)^2=(x+5)^2
4*x^2-12*x+9=x^2+10*x+25
3*x^2-22*x-16=0
3*(x-8)*(x+2/3)=0

abs(2*x-3)=x+5
abs(2*x-3)^2=(x+5)^2
abs(2*x-3)^2=x^2+10*x+25

Her ability to apply the method of “squaring both sides” using the

algebra tool was illustrative of an action which was probably beyond her

capabilities to successfully attempt unaided. Theorist offered her the

support to explore with confidence an algebraic process which was new

to her. Andrea used the available tools with deliberation and clear

intent. They provided both manipulative support and enhanced

representational facility which resulted in what appeared to be

improved understanding of the concepts involved.

Stephen tended to use the available software tools to support and verify

his own computations. Having access to a computer at home, he was

given a copy of Derive which he was encouraged to use. This occurred

rarely, and then only to view the graphs of functions, believing that the

mastery of the manipulative aspects of algebra was a requirement of his

course, and that there was little to be gained in having a computer

perform these. Although he used computer algebra software often in his

regular tutorial sessions (at the prompting of his tutor), such use was

seldom spontaneous. He appeared to view using the computer for

algebraic manipulation as a form of “cheating”, although he was willing

to use it to verify his own solutions, in the same way that he used the

answers in the back of a textbook.
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One aspect of tool use which became increasingly significant for all

students as the collection of data proceeded was the perception of

confidence in their solutions. Stephen, Ben and the others

demonstrated that they were willing to accept answers in which they

had, at times, less than full confidence, even while computer tools were

available by which these results could be verified. This aspect of tool

use became a major area of focus in the later stages of data collection,

since it has important implications for students perceptions of

mathematics learning, and their own responsibilities in this regard. It

will be considered in greater detail later in this chapter, but Stephen

provides an example of his reluctance to use the technology, even when

his own skills may be insufficient to guarantee a complete or even

correct result. The example arises from attempts by Stephen to answer

a problem posed within the module, “Something to Think About”. The

problem points out that the equations, x = 2 and x - 2 = 0 are

considered to be mathematically equivalent statements, and yet

squaring one produces an equation with two distinct solutions ( x2 = 4

=> x = -2 and 2) while the other produces a single repeated root ( (x -

2)2 = 0 => x = 2). Stephen appeared unable to come to terms with the

requirements of this question - he appeared to expect a question which

was “well-defined” with a clear “right or wrong” solution. Eventually

(after prompting from his tutor), Stephen used the graph plotter to

study the graphs of the different functions and equations but was

unable to offer an explanation with which he was satisfied.

The second part of the problem involved the equation x - 6 - x = 0. He

approached this almost with relief, as it appeared to fit more closely

with his perception of an “algebra problem” - it signalled to Stephen

that he should initiate equation solving techniques, beginning with
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squaring to eliminate the radical. This method proved unsuitable and

Stephen’s attempt at solution faltered. Unable to proceed, it was

suggested that he might “use the computer” to help. His response was

to choose the graph plotter and, later, the table of values:

Card: x = 2 and x-2 = 0? : 6:17:02 PM
Button: Hypergraph
Grapher: 6:25:56 PM
***************************
Comment: 6:28:14 PM
This shows that the function crosses the x axis at 2. About 80% confidence in 2
as a solution.
***************************
198 seconds
Table: 6:29:19 PM
***************************
Confidence now at nearly 100%
***************************

Since he still expressed some hesitation regarding his solution, it was

suggested that he might use computer algebra to assist with the

manipulation (and, in particular, he might try moving the radical

expression to the right-hand side of the equation prior to squaring):

Button :  Computer Algebra
Theorist:
• x - √(6 - x) = 0
Move √ to RHS:
x = √(6 - x)
Square both sides:
x^2 = -x + 6
Move all to LHS:
x^2 + x - 6 = 0
Factor:
(x + 3)(x - 2) = 0
Solve for x:
x = 2 and x = -3
Substitute x = -3 into quadratic: 9 = 9
Substitute into original: -6 = 0.

***************
Button :  HyperGraph
Grapher: 6:33:05 PM
HyperGraph : x^2=6-x : 6:33:07 PM
135 seconds
*************************
Comment: 6:35:36 PM
I found the table of values most convincing, the graphs were helpful but
not 100% sure.
*************************
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Stephen verified his solution in two ways - first, by substituting both

values derived from the quadratic back into the original equation

(revealing that only one was a valid solution), and then again using the

graph plotter. He nominates the table of values, however, as offering the

most convincing evidence for the solution, while the algebra tool

supported his manipulations. Although prompted towards the use of

tools in this situation, Stephen’s actions (and, in particular, the

multiple verification of his results) suggest strategic use.

Further evidence of Stephen’s reluctance to spontaneously use available

tools (even when his own skills proved insufficient) is offered by a

transcript of his attempt to complete the “Senior Algebra Review”. It was

emphasised prior to this review that Stephen should use the available

tools if he was unsure of an answer - in fact, he would be penalised for

incorrect responses. Even so, it took an incorrect result and his own

confidence dropping to 50% before he chose to use the MathPalette tools

to check a response. Stephen’s hesitation regarding tool use is captured

in the following comment:

The down side of using computer tools is that in the test you can't use
it, and you also learn the steps that you can do in the test.  The steps
that you have to do to get the answer to a particular type of question
help you to get a feel for that type of question.  When using the
computer, you can see it doing it, but you don't think as much.

On the plus side, using the computer has helped me by showing the easiest way
to get to an answer and the setout of how to go about answering it.
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Button :  Senior Algebra Review
Card : Quiz 1: Question 2  :   4:52:49 PM
*************************
Comment: 4:53:35 PM
100%
*************************
Button :  A*
Card : Quiz 1: Question 3  :   4:53:43 PM
CTRL-3 : 4:54:21 PM
*************************
Comment: 4:54:21 PM
90%
*************************
Button :  D*
Card : Quiz 1: Question 4  :   4:54:33 PM
CTRL-3 : 4:55:16 PM
*************************
Comment: 4:55:16 PM
70%
*************************
Button :  E
Button :  C*
Card : Quiz 1: Question 5  :   4:59:37 PM
CTRL-3 : 5:02:09 PM
*************************
Comment: 5:02:09 PM
80%
*************************
Button :  B*
Card : Quiz 1: Question 6  :   5:03:00 PM
CTRL-3 : 5:05:48 PM
*************************
Comment: 5:05:48 PM
50%
*************************
* MathPalette 30/8/94 5:06:15 PM

For Question 2, Stephen indicates

confidence of 100% in his

solution.

Although option “A” was the

correct response, Stephen was

only 90% confident.

Again, Stephen chose the correct

response (D) but his confidence

was now only 70%.

His first error (for which he had

assumed 80% confidence).

His confidence now down to 50%

for Question 6, Stephen selects

the MathPalette as an aid to his

substitution.

Although he possessed the mathematical competence and the

knowledge and experience with the various tools to make use of them in

a strategic way, it was Stephen’s perception of the existing mathematics

learning culture which proved the major impediment in his use of the

technology in a spontaneous and practical way. The use of the software

tools by Stephen varied for the most part between what might be

termed passive (initiated and directed by the tutor) and reflexive, in

which tools were chosen but used in a superficial way.
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The fact that Stephen failed to fully engage the problem itself is also a

significant factor in this context. If mathematics learning involves a

tension between enquiry at one extreme and instruction at the other,

then Stephen appears to identify most readily with the latter extreme.

“Mathematical” problems are those which are “well-defined” and

possess a clear and attainable solution. Exploration is perceived as a

“luxury” which time in preparation for the Higher School Certificate

examination does not allow. Stephen’s mathematical use of the

computer tools available to him was dominantly representational (and

strongly graphical in this regard); manipulative use was relatively rare,

and restricted to those operations well beyond the scope of his abilities -

large and difficult computations which were unlikely to be encountered

within the limits of his examination preparation.

One further aspect of tool use which Stephen exposed in an early

contact with a computer algebra tool (in this case, Derive) involved the

capability of computer tools to make mathematical thinking public. The

capability of the computer to make algebraic thinking explicit was an

important element in the interview with Stephen which follows, in

which the use of the computer algebra program was being

demonstrated.

Friday, 7th May, 1993
(Stephen is given a few minutes to work on a solution to the question
involving a cubic graph and its roots.)
I: (Gives the sheet with the graph of f(x) = x3 - 12x and  four

options to be judged true or false and sets the function up on the
computer using DERIVE).  Now the first question says that the maximum
value of the function is 16.  Your solution was . .

S:  65.
I:  F(5) = 65 (from the graph)  and that’s obviously correct.  (Enters

F(5) on DERIVE)  We put in F(5) and press S for simplify . . and out
comes 65.  Why did you use that?  Um, why did you say that?

S:  Um, because the maximum value is the positive in the x (indicates the
given domain for the function, -5 ≤ x ≤ 5).  And if it only goes . . if
the range is between 5, you put in the 5 . . into the x values, and that
will get you the maximum value on the y axis.
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I:  Right.  So this is only in this sort of case, where it’s a restricted
domain?

S:  Yes.
I:  Is it always the maximum positive x value that gives you the maximum

value of the function?  Say you had a different graph.  Would it be
possible to have one where the maximum occurred at -5  instead of plus 5?

S:  I don’t think so.
I:  So even if you had a graph that was the reverse of this one . .
S:  Yeah . .
I:  So the maximum occurs at the highest point?  Okay, so we weren’t

tempted by that there (indicates the relative maximum on the curve) .
It’s obviously not the maximum is it?

S:  No.
I:  Okay, what if . . it wasn’t a restricted domain?  What if it didn’t

start at -5 and end at 5, it took all values?  What would you say then
about the maximum value of the function?

S:  Um . . it’s all reals on the y axis . .
I:  But if we wanted the maximum value?  Someone said, “What’s the

biggest . . the maximum value of the function?”  What would you say?
S:  (Pause)  uh, you wouldn’t be able to give one, because . .
I:  It hasn’t got one has it?
S:  It’s infinity.
I: That’s right.  Good, okay. . very good.  Now next.  It says, ‘The

equation f(x) = 0’.  Now, from what we were just talking about, so that’s
an equation there . . f of x equals nought.  ‘The equation has exactly
two roots, one negative and one positive.’  And your answer?

S:  No.
I:  What do you mean by that - ‘it’s situated at zero’?
S:  Um, because zero is zero on the axis, it’s . . they can’t have a

negative or positive value.
I:  Alright.  So how many roots does this equation have?
S:  Just positive.
I:  So when you let f(x) = 0, it has . . what . . just one root at zero?
S:  Yeah.
I:  What about these two?  What do you understand by a ‘root”’, when it’s

asking for the ‘root’ of an equation?
S:  Oh, was that for this part (indicates the function in question)?
I:  Oh, it refers to the same function, yes, sorry.  f(x) is still x

cubed minus 12 x.  Let’s see what it says here (types on the computer)..
This time, we will just take f(x) = 0, and create an equation.  And
notice, because it’s an equation, you don’t have to use the dots in front:
you just use an equals sign.  The other one was defining a function, so
the computer thinks there is a difference between functions and
equations.  It treats them differently.  f(x) = 0.  If we asked it to
solve - you see the ‘soLve’ command, you just type ‘L’ to solve.  Solve
expression number 4.  It says x = 0 is a solution.  So is minus 2 root 3,
and so is plus 2 root three.  So that gives three . . three roots.  So
when we are looking at the roots of an equation, we are looking at . .
what in terms of the graph?

S:  The places it cuts through the x axis.
I:  That’s right.  So in this case, the equation, f(x) = 0, has exactly .

. how many roots?
S:  Three.
I:  Three roots.  So that is false.  You were right that it was false,

but for the wrong reason.
S:  Yeah, I didn’t know . . I didn’t know that was for this question.

The computer algebra program is being used as a tool for

demonstration and verification. At the same time, it is visually exposing
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elements of Stephen’s thinking which may have been incorrect. While

he displayed some uncertainty regarding the nature of the question, his

understanding of key terms such as “roots of an equation” is made

public in this encounter, and the tutor is in a better position to judge

areas of which the student may have been unsure. The interview

continued, exposing further gaps in Stephen’s understanding.

I:  Yes, well that explains it.  Alright.  What about part C: it looks a
bit mysterious.  ‘f(x) = k has three real roots for all real k.’ What
do you think now about this answer, now that you know that it’s talking
about this thing here (indicates the function) ?

S:  Um . . yeah, I think it has got three roots the same as the other one.
I:  For all real k?
S:  Yeah.
I:  What do you think the question is talking about when it’s saying,

‘f(x) = k for all real k’?
S:  Um, if you put any number in for k, like, how many times will it

touch the x axis?
I:  Let’s ask the computer (types in f(x) =  2).  If we put in f(x)

equals 2:  Now remember, we just solved it for f(x) = 0, which is that
picture there (indicates graph)  where it cuts the x axis.  Let me put in
f(x) = 2, and solve . . takes a bit longer this one . . Now we don’t have
to get tied up in what they actually are, just how many of them there are
...  and there’s number three.  Okay, there are three roots.  They are
pretty horrible looking things, but we could tell it . . just as an
example, if I . . see the last command is ‘approX’: if you type ‘x’, it
approximates, and so instead of giving it in that exact form, it will
spit it out as a decimal.  It turns out that one is actually equal
to about three and a half.  So each of those is just a decimal number.
What would they be representing, those three numbers?

S:  ... Where it crosses the x axis?
I:  Where what crosses the x axis?
S:  The curve.
I:  Which curve?
S:  This one (indicates the graph of f(x)).
I:  But this is f of x.  Here we are talking about f of x equals 2 in

this case.
S:  So, if you put . .
I:  Go on.
S:  If you . . make x cubed minus 12x equals 2 . .
I:  Good, go on.
S:  And then you factorise it . . you ‘take the two over’.
I:  Right, take the two across . . It’s now equal to nought . . so it’s now

more like what we are used to, isn’t it?  So we could graph this thing.
Let’s do that.  What you have done there is f(x) minus 2 . . right?  And
we know this is equal to x cubed minus 12x minus 2 . . now if we plot
that . . we might actually zoom out a couple of times before we start...
to make it bigger.  See that little cross there:  that’s at (1, 1).  So
it’s giving you an idea of the perspective of the graph.  Right, so, now.
if we press ‘P’ for ‘Plot’ it’s going to plot f(x) - 2, or x cubed minus
12x minus 2 . . Now that’s a function.  We had probably better call it
something else . . let’s call it ‘G’.  As a function, it has a graph,
which we will see in about ten minutes, when the thing gets around to
doing it, right?  And it’s actually equal to another function, right?  It’s
equal to f of x, take away two.  Okay, what we are interested in is this
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here, which is not a function, it is an equation.  Right?  By your
definition, which is quite right.  So what does this mean, in terms of
the graph that will eventually appear up there?

S:  It will cross through the y axis at negative two . .
I:  Yes.
S:  And . .
I:  How will you solve the equation by looking at the graph?
S:  Um . . put the x values in?
I:  Okay, there is the graph . . now where are the solutions to the

equation?
S:  Um . . where it hits the x axis at (0, 0), and at the other two?
I:  At the other two, yeah.  It’s not actually (0, 0), although we’ve

zoomed so far that it looks like it.  It’s actually . . what it should be,
of course, is . . this picture (f(x))  moved down two steps.  Right?

S:  Mm.
I:  And as we saw, it’s still got three solutions.  So your theory is

looking good so far, that we will always have three real solutions.
Okay, we used k = 2 as an example.  Let’s try something different . .
give me another number?

S:  Minus 5.
I:  Okay, so we are interested in f(x) = -5.  To graph that, what would

you graph?
S:  x cubed minus 12x plus 5.
I:  Okay, so it would be f(x) + 5.  The same picture as  . . that

equation . . plot . . Now if using k = 2 moved the graph down two steps,
what will you expect  k = -5 will do?

S:  Move it up.
I:  Move it up 5 steps.  Alright, while it’s thinking about drawing the

graph (it could take a while) . . so the values of k have what effect
upon the graph of f(x)?

S:  Move it up or down along the y axis.
I:  Alright.  Then we will ask the question again: do you think it’s true

that, for any value of k, it will always have three real roots?
S:  Yeah.

This interview followed soon after Stephen had offered his definitions of

function and equation, described previously. His confusion regarding

the distinction between the two and his association with the visual

format had prompted the interview focus upon these two terms. The

interviewer is careful to point out examples of each, and to use the

terms correctly in order to emphasise the similarities and differences

between them. Stephen demonstrates good skills of graphical

interpretation, recognising the effects of adding and subtracting a

constant term upon the vertical position of a graph. He is, as yet,

unable to visualise that certain vertical translations will result in the

cubic graph cutting the x axis in less than three places (Figure 8.6).
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Figure 8.6: Comparing ƒ(x) and ƒ(x) - 30

I:  Alright.  So it wouldn’t matter if you put in . . k equals thirty?
What would k = 30 do to the graph?

S:  Move it up thirty . .
I:  Oh, remember, positive numbers actually moved it down, and negatives

moved it up.  So k = 30 will move it down 30 steps.
S:  Can I see . . (inspects the original graph closely).

Note that Stephen is analysing the graph at this point, alert to the fact

that his previous assumptions are being questioned. He now realises

that the graph may cross the axis at less than three points, and that, as

a result, the equation may have less than three solutions.

I:  f(x) minus 30 (enters on the computer) . . and because it takes so
long to graph it, what we will do is solve it instead: the same effect.
It’s thinking about it . . like all good students, it doesn’t rush into
these things.  So what’s happening here is . . it’s taking f of x (that
picture there) and moving it down thirty steps.  How many solutions is it
going to have?  How many places where it will cross the x axis?  ...So what
it means is that, as you saw, when you move it down far enough, this
“hump” is going to be below the x axis and it will only cross in a single
place, and only have one root.  So it means that there are times when it
doesn’t have
three roots.  Will it always have at least one real root no matter how
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far you move it up or down?
S:  Yes.
I:  Good, well at least it will if the graph continues forever.  If we

are looking at this particular graph, how far would you have to move it
down so that there will be no real roots?

S:  65.
I:  Yes, more than sixty five.  Alright, we can see that it has three

real roots for some values, one real root for other values, would there
be anywhere where it could have two?

S:  . . . (Long pause)
I:  Can’t imagine any?  Imagine that we move this graph gradually down.

Alright, as you move it one step down, when k equals minus one . . I’m
sorry, k = 1, and 2, we move it two steps down; three . . all this time,
it’s still got three zeros, three roots.  What about when k equals 16? . .
What will happen at that point?  And I’ll point out that that’s actually
the height of that . .

S:  It will just touch the x axis at this one . .
I:  So it will have . . ?
S:  Two.
I:  So there is at least one place where there are two solutions.

Anymore?  Anywhere else that you could imagine it would have just two?
S:  Move it up 16.
I:  Yeah, that’s right.  Okay.  We’ve got the picture, and eventually

this will have it drawn . . What it’s drawing there, you remember, is f(x)
minus 2, when k equals two, so it moves it down two steps.  Now, . . we
will let it go.  Okay, you’re doing well.  Last question then.  The
minimum value of the function is minus 65.  What did you say?

S:  Yes.
I:  Yes?  No problem then.  It’s true, isn’t it?  What they were looking

for, of course, there, was for people to be distracted by these . . what
are called “relative maxima” and “relative minima”.  It means that, in
that little area there, it’s certainly a minimum point, but over the
domain, it’s not an absolute minimum.  Okay.  You did well.

The computer served a vital role in exposing aspects of Stephen’s

thinking about functions, equations and their links with graphs. He

found the experience valuable and continued to relate strongly to the

graphical form. His use of the manipulative tools available, however,

remained minimal.

While Stephen was almost stubborn in his refusal to seek computer-

based assistance for his mathematical difficulties, the same could not

be said of Ben. As a student, Ben preferred the role of “passenger”

rather than “driver”, rarely exhibiting initiative and accepting

responsibility for his own learning. His preference for “visualisation”

reflects his desire “to be shown” and corroborates his generally passive
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approach to mathematics learning. Like Stephen, Ben had extensive

opportunities over a prolonged period to become familiar with the

software tools. Like Stephen, Ben rarely chose to use the tools

spontaneously, even when relatively uncertain of his own response.

Unlike Stephen, Ben was not unwilling to use the tools, but rather

lacking the initiative to actively select them.

Consider Ben’s approach to the problem: “What is the value of c if the

vertex of the parabola y = x2 - 8x + c is a point of the x-axis?”

Firstly, I graphed the parabola y = x^2 - 8x minus the value of c. Then I saw the
vertex of this solution as (4, -16). Then I saw for the vertex to be a point on the x
axis the y value would have to equal 0, so the vertex would have to be (4, 0). So I
had to move the y value up 16 values thus making the y intercept 16. Therefore
the equation would equal y = x^2 - 8x + 16 showing the value of c to equal 16.
The table of values was also used to see if these values were correct.

Unsure of how to begin, Ben was prompted by the tutor to consider the

graph of y = x2 - 8x. This was followed by the process described above,

demonstrating that Ben had competent mastery of the available tools

(he actually used graph plotter, table of values and, finally, Theorist to

check the factored form of his answer). His description is replete with

elements of visual imagery, used to advantage when he imagined

moving the entire graphical object up by 16 units to obtain his answer.

Ben was happy to use computer tools whenever prompted, both to

verify and to obtain solutions to problems. While Stephen used

computer algebra only for those manipulations which were beyond him,

Ben used it as a convenience, especially for tiresome and routine

manipulations such as the solving of simultaneous equations, and even

for solving linear equations (which he was quite capable of solving “by

hand”).
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The use of the available tools by the two younger students was, not

surprisingly, far more limited mathematically than that by the older

participants. Tony used Theorist in particular as his preferred tool,

enjoying the support it offered him for solving linear equations (which

he had recently encountered at school). Like Andrea, Tony was willing

to use such tools spontaneously to both verify his work and to support

his computations. His attitude towards the computer algebra program

is captured in a short transcript in which he is demonstrating its use to

a peer (C):

T: Oh goody, it’s Theorist. I’d better tell you about this [Looks through files].
This one looks good - it says ‘Good intro’.
See, it can do this kind of thing.

C: It looks a bit hard.
T: Sorry, it just looks hard. You can type in all kinds of stuff like this - like ‘k

2a outside 3 times 4 times 999, 456a then outside brackets to the square
root of 999, 456a and now we’ll try and solve it. We are really testing it
here.

C: Simplify?
T: Simplify? OK. Let’s simplify this one.
C: It probably can’t be simplified.
T: You’re right. We can’t do that one either, so we’ll close off this one. What

did we just do? Oh, it’s alright now. Let’s do one of these - is that pretty or
what? [referring to a three-dimensional graph].

Tony demonstrates, not only a very positive attitude towards the

computer algebra program, but a willingness to use it to “play” with

mathematics which would traditionally be beyond his capabilities. This

element of curiosity was also evident in Tony’s interest in the extension

module on Chaos Theory, He chose to work through this module

himself, and demonstrated what might be considered strategic use of

tools in his exploration, moving from numerical values to graph to

explore features of interest which resulted from different values of the

variable “r”.
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* Tony (  ) Exploring Algebra session : 4:00 PM, Tue, 1 Nov 1994
Card : Exploring Chaos  :   4:00:40 PM
Card : The sounds of chaos  :   4:00:45 PM
Button :  CHAOS [repeated 9 times]
Button :  Plot
Button :  The sounds of chaos
Button :  Plot
Button :  CHAOS
Field : r-values  :  -1
Button :  CHAOS
Field : r-values  :  4
Button :  CHAOS [repeated 8 times]
Field : r-values  :  1000
Button :  CHAOS
Field : r-values  :  1000
Button :  CHAOS
Field : r-values  :  100
Button :  CHAOS
Field : r-values  :  10
Button :  CHAOS
Field : r-values  :  11
Button :  CHAOS
* Tony 1/11/94 4:03:12 PM
----------------------------------------------

Since Patrick had not studied any algebra at school at the time of the

data collection, symbolic manipulation for him was a meaningless

exercise. Although he was successfully taught to use Theorist to solve

linear equations by moving terms, he “didn’t learn anything because the

computer did it for me leaving me only with an answer not the

knowledge of how to do it”. Patrick was far more positive after using the

concrete algebra facilities offered within the Mathpalette, and after

engaging in the Think of a Number game within the Beginning Algebra

module. This activity engaged the user in the use of variables as

generalisers, playing the traditional algebra game (I think of a number,

multiply by 2, subtract 5...) using the table of values representation to

operate, not upon a single number or variable, but upon a listing of

several numerical values. In this way, the student sees that the process

of acting upon a symbolic variable corresponds to actions upon a

potentially infinite array of numerical values. After engaging in this

numerically based exercise twice, the student then attempts the same

process using symbols within a computer algebra tool. In Patrick’s case,
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the preferred tool was MathMaster, since the interface allowed the user

to select an expression and then explicitly operate upon it using the

four basic operations. To play the “number game”, then, Patrick entered

“n” and “2” and selected the multiplication symbol to produce “2n”. He

then entered “5” and chose “subtract” to produce “2n-5”. Continuing

the process eventually leads back to the original value, “n”.

Patrick found this symbolic manipulation to be a meaningful experience

after having grounded the procedure in numerical values, using the

table of values representation. He demonstrated strategic use of the

computer algebra tool, then, by developing his own Think of a Number

game, using MathMaster to support his simplification. Once again, the

algebra tool supported learning beyond that which would normally have

been possible for this student, and contributed to both increased

understanding of the nature and meaning of variables (as demonstrated

in his definition), and also to improved skills of algebraic manipulation.

The students generally appeared to use the manipulative tools offered

by the computer for purposes of verification and for convenience. The

high incidence of acts of substitution reflects the ease which this

mathematical operation could be carried out using the computer

algebra tool, Theorist. Students had simply to “drag” the expression or

value to be substituted onto the algebraic equation, and the result

would be displayed. Similarly, the solving of equations was facilitated by

the Theorist interface, allowing the user to “drag” terms across the

“equals sign” in a physical simulation of that method of equation

solving. The obvious preference displayed for this method of equation

solving by the student participants reflects the fact that the software

encouraged such an approach. Having access to such a facility
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appeared in no way to detract from their skills when working without

the support of the computer tools.

A final feature of computer use which appeared significant for several of

the students was that associated with entry of algebraic expressions

and equations, and even of numerical expressions to be evaluated.

Initial entry of algebraic forms into a computer application appears to

be associated with a process of reconstruction, in which the user must

transfer the visual stimulus of the algebraic expression or equation into

a form which the software may act upon. This involves a deliberate

consideration of the various components and their relationships which

may act to move the cognitive level from a superficial visual mode to one

which is more analytical. It was as a means of exposing such thinking

that a palette was created by which algebraic forms could be entered,

and which would make explicit the user’s recognition of the various

parts of which they are composed.

Students who were most competent in their algebraic skills appeared to

have little problem entering algebraic forms using a variety of forms -

the expanded text-format of several of the programs (“3*x^2-4*x+2), the

simplified text-format developed for the MathPalette and instructional

modules (3x2 - 4x + 2, where the exponent was placed by simply using

the option key with the desired number), or the point-and-click

interface offered by the palette. Most participants found that the use of

the palette was too slow and cumbersome, and preferred the simplified

format, adapted from that offered by the programs MathMaster and

CoCoA. All students demonstrated skill and familiarity with the use of

their own calculators, which they were required to use in their

mathematics classes. It was noted, however, that the entry of
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expressions in correct two-dimensional format offered by the

MathPalette encouraged greater confidence in their solutions, since they

could see all the components of complex numerical expressions. When

evaluating the expression 
2.5 31.6

24.9 ,  for example, Ben worked first with

his calculator, and then entered and evaluated it using the MathPalette.

Confidence in my first answer was about 80% because I am using my own
calculator. Confidence now 100% because I saw the actual expression set out for
me.

Ben observed that, when using a calculator, each term of the expression

disappears after entry to be replaced by the subsequent term. The

computer allowed the entire expression to be viewed, and so any errors

of entry would have been visible.

Jane offers a response which may be generalised to each of the student

participants regarding use of the software tools when she comments:

They help you to get the answer. They show you how to work out a question. Out
of computer algebra, graph plotter and table of values, I have found the graph
plotter to be most helpful - it shows you what the graph might look like, If I had
a program like the algebra program at home, I might use it, but more for the 2
unit type questions.

Jane’s reference to “2 unit type questions” implies questions involving a

high level of manipulative difficulty. It appears that the students in

general found the most valuable aspect of using manipulative algebra

tools to be in making explicit the solution process: “seeing the steps”.

The same could be said of a written solution, or of watching the tutor

demonstrate the development of such a solution. However, the

computer appears to offer one important advantage in this regard: it

supports the students themselves in developing the steps, and so
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encourages their involvement as active participants in the process,

rather than as spectators.

The mathematical use of available tools by the preservice teachers was

quite different for the two groups. Nowhere was the distinction between

instruction and enquiry made more explicit than in the involvement of

these participants. As already noted, the Group A preservice teachers

had chosen, almost entirely, to work through the modules associated

with Beginning Algebra. The assessment requirements for this group

explicitly rewarded their comments regarding the units of work and the

tools. The result was that, in general, these participants engaged in the

project as an evaluation exercise and their thinking and responses were

predominantly pedagogical, rather than mathematical. The two

occasions when Group A individuals encountered the problems in the

module Something to Think About, their tool use consisted simply of

viewing the graphs for the functions they encountered. Their use of the

tools might be thought of as random as, clicking to move from page to

page within the modules, they clicked a button here or there to view

graphs which interested them. They then moved on without attempting

to engage the question, in the same way that Stephen avoided

confronting a question which did not appear amenable to a well-defined

solution. The Group A preservice teachers worked through the units as

required, dutifully using the tools required of them and observed

positive and negative features of the program and accompanying tools,

but at no point did they display mathematical interest or curiosity

which would have provided a stimulus to explore the mathematical

ideas which they encountered. They appeared to think like

mathematics teachers rather than like mathematicians.
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It was common for participants in Group A to describe problems which

they encountered with both program and tools. The former were

associated most often with perceptions of disjointedness and repetition

in the activities for the different modules:

At this stage I would like to comment on some of the [negative] features of the
package. The setup of the package seems to be very disjointed. It does not flow
from one item to another ... Some of the tools did not link in very well with the
package... (A1)

The graph facility was very time-consuming in the ‘zooming out’ process. The
establishment of the point of intersection of the two graphs is quite hard to
determine. (A3)

The first module I worked through was Curve Sketching. I found it to be very
useful, but it was also slow, repetitive and time consuming. (A6)

Although the use of the tools had been demonstrated for these

students, it was common for them to encounter problems entering

expressions using the palette, and using text-file entry methods. At the

time that this data was gathered, the modules required algebraic

expressions to be entered in “expanded” form - as “y = 4*x^2 - 3*x”, for

example, instead of the simplified form. In spite of explanation to this

effect, several of the preservice teachers attempted to enter equations

such as “y = 4x”.

The problems encountered by this group in particular served to inform

the continued development of the instructional modules and the

accompanying tools, especially the improved interface allowing simpler

and more intuitive entry of mathematical forms. Steps were taken to

provide better links between the activities, and to provide easier

navigation through the modules (these included the addition of a new

menu from which users could move to any part of the program at any

time, and so reducing the problems of “getting lost” within the

modules).
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 The overall assessment of the program by this group was quite positive,

allowing for the difficulties which they expressed. They remained

enthusiastic regarding the potential of the computer as a tool for

algebra learning.

The use of the computer in the classroom is a way of encouraging and
motivating students to learn algebra without doing all the textbook problems
that are typically set in formal classes. (A2)

Two areas that I thought the computer could help greatly, especially as a time
saving device, was in the area of graphing functions and the area of tabling data.
(A4)

...I see the main role of computer technology in supporting the teaching and
learning of algebra as taking away much of the boring, unnecessary
manipulative work that traditional approaches give to the students. In this way,
they are promoting understanding and meaning rather than blind application of
teacher imposed rules. (A6)

Other positive features recognised included the provision of meaningful

context for algebraic ideas, the freeing of students to work at their own

pace and the encouragement of discussion and group approaches.

However, the Group A preservice teachers appear to concur with the

students who perceive the principal advantages offered by computer

tools as those associated with motivation, convenience and

representation, rather than supporting and extending the traditional

mathematical processes associated with manipulation of algebraic

forms.

The evaluative comments of the Group A participants, then, proved

highly valuable in terms of the ongoing development of the package and

tools, and their perceptions were informative of the role of computer

tools in algebra learning. It was clear, however, that this group had not

engaged in the use of the computer as a mathematical tool. It was for

this purpose that the Group B preservice teachers were included in the

Page 300



Learning to Use New Tools Using the Tools

study and expressly encouraged to make problem solving a priority. The

resulting incidents of tool use were varied, inventive and frequently

strategic in nature.

Consider, for example, the attempts by B3 to answer the question from

the module Something to Think About , involving the equation:

x2 5 x− 5+ x2 9x− 20+ 1=

Her first attempt involved repeated use of the graph plotter:

Button :  (x^2-5x+5)^(x^2-9x+20)=1
y=(x^2-5*x+5)^(x^2-9*x+20)-1
Grapher: 11:56:50 AM
HyperGraph : y=(x^2-5*x+5)^(x^2-9*x+20)-1 : 11:56:50 AM
252 seconds
y=(x^2-5*x+5)^(x^2-9*x+20)-1
27 seconds
Button :  (x^2-5x+5)^(x^2-9x+20)=1
y=(x^2-5*x+5)^(x^2-9*x+20)-1
Grapher: 11:57:23 AM
HyperGraph : y=(x^2-5*x+5)^(x^2-9*x+20)-1 : 11:57:23 AM
y=(x^2-5*x+5)^(x^2-9*x+20)-1
10 seconds
* MathPalette 16/9/94 11:57:38 AM
82 seconds
Grapher: 11:59:15 AM
HyperGraph : y=(x^2-5*x+5)^(x^2-9*x+20)-1 : 11:59:15 AM
y=(x^2-5*x+5)^(x^2-9*x+20)-1
41 seconds
* MathPalette 16/9/94 12:00:01 PM
HyperGraph : 12:00:03 PM
Grapher: 12:02:03 PM
HyperGraph : y=(x^2-5*x+5)^(x^2-9*x+20)-1 : 12:02:03 PM
y=(x^2-5*x+5)^(x^2-9*x+20)-1
11 seconds
* MathPalette 16/9/94 12:02:20 PM

This provides an example of what has been described previously as

reflexive use of the software tools. Such use appears to have been

encouraged by the facility within the instructional modules which

allowed functions to be graphed by simply “clicking” on them. This

appeared to induce at times almost automatic viewing of the graphs in a
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clearly visual way. Obviously frustrated, B3 moved on to other

activities, but demonstrated persistence and determination when she

returned to this question at a later time with an improved repertoire of

tools, including the table of values and the inbuilt “solver”:

* MathPalette 23/9/94 12:14:34 PM
Solver: Searching for the roots of  (x^2-5x+5)^(x^2-9x+20)-1 from -10 to
10 ...
5 solutions of (x^2-5x+5)^(x^2-9x+20)-1 have been found at x = 1 ,2 ,3 ,4
,5
HyperGraph : 5 solutions of (x^2-5x+5)^(x^2-9x+20)-1 have been found at x
= 1 ,2 ,3 ,4 ,5  : 12:31:58 PM
27 seconds
* MathPalette 23/9/94 12:32:30 PM
Table: 12:32:36 PM
x = 1 ,2 ,3 ,4 ,5  : 12:32:36 PM
Table :   :   12:36:00 PM
Table : 5 solutions of (x^2-5x+5)^(x^2-9x+20)-1 have been found at x = 1
,2 ,3 ,4 ,5   :   12:39:53 PM
*************************
Comment: 12:40:16 PM
this is the new revised comment to this silly question. we have found 5
solutions the original 1, 4 &5. but now we have found 2 more solutions.
These solutions occur  when we have (-1)^2 and this is when x=3 (by
factorising both the base and index
*************************
Comment: 12:46:47 PM
the other solution is when we have -1 to the power of a positive  which
occurs when x=2.
*************************

This extract offers what might be considered a definitive example of

strategic software use.  It is deliberate, goal-directed, persistent and

insightful, making thoughtful use of the range of available and

appropriate tools to not only derive a solution, but to verify this result

using multiple sources. It was included as an example of a problem

which was not amenable to graphical solution (Figure 8.7), and yet was

immediately accessible using the table of values. Those participants

who were restricted to the graphical representation were disadvantaged

in such a case.
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Figure 8.7: A difficult function to graph

Figure 8.8: What is happening at the “fuzzy bits”?

When asked to describe “what is happening at the fuzzy bits” in the

function y = sin(tan(x)) (Figure 8.8), B4 used both xFunctions and the

HyperCard graph plotter to examine the function, and then responded:
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CHAOS!!! is happening? As the sin and tan functions interact with each other.
The function is periodic with a period which is large - wait and I will just find out
how large...

She then returned to the graph plotter and used the “Trace” function to

identify the period of the graph as 20 units. Like the function displayed

in Figure 8.7, this problem required more than simply a visual use of

the graph plotter to solve.

Even strategic use of the software tools, of course, does not guarantee a

correct result. When B6 attempted a solution to the problem which

Stephen had avoided, she used the graph plotter thoughtfully several

times, and commented:

Depending on how you square each equation you can get a different result. If
you take x = 2 you can square it two ways: x^2 = 4 or x^2 - 4 = 0, for x - 2 = 0,
the two ways are: x^2 - 4 = 0 or x^2 - 4x + 4 = 0 ... If we take the square of x = 2
to be x^2 - 4 = 0 and the square of x - 2 = 0 to be x^2 - 4x + 4 = 0 we find that
the first equation has 2 solutions while the second equation has one solution.

Proceeding to the second part of the problem, she observes after

graphing:

If we square this equation we get x^2 - (6 - x)^2 = 0. This becomes x^2 - (36 -
12x - x^2) = x^2 - 36 + 12x - x^2 = 12x - 36 hence x = 3.

It seems likely that use of a computer algebra tool would have helped

B6 avoid the frequent algebraic error, that (a - b)2 = a2 - b2. It is also

likely that her arrival at the correct solution using incorrect means was

directly attributable to her use of the graph plotter, which allowed her

to identify x = 3 as the required solution.

Whether complete or incomplete, correct or incorrect, the Group B

preservice teachers engaged meaningfully and persistently with the
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open-ended mathematical explorations with which they were

confronted. While the requirements of the assessment task undoubtedly

contributed significantly to this interaction with both mathematics and

tools, it does not entirely explain elements of perseverance and enquiry

which appeared consistently. Rather it seems likely that interest and

curiosity featured in the process.

Both groups of preservice teachers had chosen to be teachers of

mathematics; they had recently completed extensive study of the

subject and must be assumed to be at least competent in this regard

and, presumably, interested in mathematics itself. Both groups

interacted with essentially the same materials with basically the same

available tools, and yet one group engaged meaningfully in open-ended

mathematical exploration, while the other deliberately held back from

such engagement. For Group A, it appears that “thinking like

mathematics teachers” dominated their interactions with the tools and

led to a failure to allow elements of curiosity and interest to surface. It

is possible that, at least as perceived by one group of preservice

teachers, mathematics is not something that mathematics teachers do,

but simply something that they teach. This is consistent with a view of

mathematics as a relatively fixed corpus of knowledge and skills which

teachers, having acquired, are charged to pass on to their students, but

not, it seems, to question or even to extend themselves.

My own use of the software tools, finally, involved exploring several of

the same problems already described. I had attempted to select tasks

appropriate and amenable to solution using computer tools by

identifying activities which were unlikely to lie beyond the zone of

proximal development for the intended users and yet which were not
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easily approached using traditional means. The problem displayed in

Figure 8.7 was typical of such a task. It was not easily solved, either by

traditional manipulative approaches or by simple viewing of a graph. At

the same time, the solution was accessible, both using computer tools

(in this case, table of values and the MathPalette Solver both produced

immediate results) and by algebraic means, if the user approached the

problem thoughtfully. In this case, the equation

x 2 5 x− 5+ x2 9x− 20+ 1=

could be solved by observing that, for any expression of the form ab to

equal 1, either a = 1 or b = 0. This readily leads to the identification by

quadratic methods of solutions of x = 1, 4, 4 and 5. This problem was

drawn from the 1988 NCTM Yearbook, The Ideas of Algebra, in which

these are listed as the solutions. I had accepted this result until I

happened to use the table of values and found that x = 2 and x = 3 also

appeared to be solutions. The Solver which I had developed to

complement the MathPalette also produced solutions at values of 1, 2,

3, 4 and 5. As deduced by B3, the additional solutions arise when it is

realised that, for ab, if b is even, then a = -1 will also produce a

solution. This occurs only when x = 2 or 3.

This provides an example, then, of a question which is most appropriate

to examine using software tools. The solution is not accessible only

through extensive computational capabilities on the part of the

computer, but also by traditional means. In fact, the computer directs

the user back to such means to understand the result, and so leads to

increased understanding and a useful learning experience.
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I continued to investigate this function, using the range of tools

available, in case any other features of interest emerged. Use of the

“trace” function of the graph plotter, the “substitute” function and the

table of values suggested that further investigation may be warranted

around the value of x = 1.36.

Function: (x2-5x+5)^(x2-9x+20)-1
12:07:14 PM
Button :  ZoomIn
Trace graph with optionkey - observe values around 1.36.
CTRL-2 : 12:11:10 PM
Substitute:  ...
CTRL-2 : 12:11:22 PM
Substitute: (x2-5x+5)^(x2-9x+20)-1 ...
If  (x2-5x+5)^(x2-9x+20)-1 ...x = 1.37 ... then the result is -1
CTRL-2 : 12:11:57 PM
Substitute: (x2-5x+5)^(x2-9x+20)-1 ...
If  (x2-5x+5)^(x2-9x+20)-1 ...x = 1.36 ... then the result is -1
CTRL-2 : 12:12:27 PM
Substitute: (x2-5x+5)^(x2-9x+20)-1 ...
If  (x2-5x+5)^(x2-9x+20)-1 ...x = 1.371 ... then the result is -1
CTRL-2 : 12:12:58 PM
Substitute: (x2-5x+5)^(x2-9x+20)-1 ...
If  (x2-5x+5)^(x2-9x+20)-1 ...x = 1 ... then the result is 0
CTRL-2 : 12:13:24 PM
Substitute: (x2-5*x+5)^(x2-9*x+20)-1 ...
If  (x2-5*x+5)^(x2-9*x+20)-1 ...x = 1.38 ... then the result is -1

Table: 12:14:53 PM
y=(x2-5x+5)^(x2-9x+20)-1 : 12:14:54 PM
Table :   :   12:14:59 PM
Step Size  :  0.01
function2  :  y=(x2-5x+5)^(x2-9x+20)-1
Step Size  :  0.001
function2  :  y=(x2-5x+5)^(x2-9x+20)-1
Initial Value  :  1.37
function2  :  (x2-5x+5)^(x2-9x+20)-1
* SMA (  )  Exploring Algebra session : 12:19 PM, Fri, 28 Oct 1994
----------------------------------------------
* mathpalette 28/10/94 12:19:53 PM
Algebra Tool 12:20:08 PM
Theorist  Student Edition : y=(x2-5x+5)^(x2-9x+20)-1 : 12:20:08 PM
*************************
Comment: 12:24:18 PM
Well - another interesting one.  y=(x2-5x+5)^(x2-9x+20)-1 has solutions at
x = 1, 2, 3, 4, and 5, but the graph suggests a zero around 1.36 (found
using the trace function) just as it becomes undefined.  The table of values
produces a value of -1 for all values from 1.36- 1.37.
*************************

Questions such as this are extremely rich, mathematically, supporting

and encouraging exploration by both teachers and students. Such
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questions demonstrate the potential for the use of computer tools to

lower the barriers between teacher and students, offering the basis for

them to become “co-learners” in mathematical exploration. While

traditional questions associated with algebra learning tend to be closed,

sequential and well-defined (and so discouraging the effective use of

computer tools), questions such as those described here suggest that a

critical aspect of “learning to use these new tools” will be in “learning to

ask new questions”. From the evidence of this study, strategic software

use appears most likely to occur within the context of questions which

are open-ended, rich in mathematical potential and yet accessible using

both traditional and technological means. Within this study, such

questions have included the high level problems mentioned above (most

suitable for senior secondary and tertiary students), but may also be

found among tasks available to younger students. For example, Ben

engaged in a useful investigation - at the prompting of his tutor - as to

whether 2x2 - 4x + 2 should be classified as a “perfect square”. In

cooperation with his tutor, several different “definitions” of “perfect

square” were recognised, which included:

• A numerical definition: a number which can be expressed in

terms of two equal integral factors;

• A graphical definition: a quadratic function whose graph touches

the x axis only once;

• A “factor” definition: a quadratic function which can be expressed

using two equal factors;

• An “equation” definition: A quadratic equation with a single root

(or two equal roots, depending upon your point of view).

As a result of this investigation, Ben came to realise that much of

mathematics is subject to definition, and so whether a function may be

considered a perfect square or not depends upon your point of view. He
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also gained considerably in his cross-representational facility, as he

used graph plotter, number tools and computer algebra to explore the

various representations associated with perfect squares.

At all levels, open-ended questions which are sufficiently challenging to

require support and yet accessible enough to appear possible serve to

encourage the type of software use which we describe here as strategic.

Confidence and Uncertainty

Finding the balance between tasks which are too difficult and those

which are too easy has always been a hallmark of good teaching.

Students invariably find the learning of algebra to be a challenging

experience, its very symbolic nature placing demands upon formal

thinking processes which are, for many high school students, still

developing. It is not uncommon for students to spend a significant part

of their time engaged in algebra learning in various stages of

uncertainty. As has already been observed, students at all levels within

this study were observed to be most comfortable with readily

recognisable algebraic forms, especially equations which carried with

them a signal to act in a specific predetermined way. Even such

common forms as algebraic expressions (such as 4 - 3x) proved a

source of some uncertainty as students and preservice teachers were

denied access to the action strategies available to them for equations.

When using computer software tools, these areas of uncertainty are

likely to increase rather than decrease. In the majority of cases, the

user is presented with a blank screen with little or no direction as to

how to commence. In any given task, a student must first interpret the
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requirements of the task mathematically, deciding upon an appropriate

course of mathematical action, but must additionally interpret the task

technologically, choosing first between available tools and then,

frequently, from a range of actions available within each tool. As the

functionality of the tool increases, so does the range of potential choices

and so, accordingly, does the level of uncertainty rise.

Particular software tools have attempted to address this problem.

Calculus T/L II, for example, offers a unique support facility: having

entered a function, equation, expression, data list or any of a number of

possible objects, the program offers the user visible access to those

actions appropriate to that object. Thus, for a function, for example,

buttons for substitution, graphing, simplification, completing the

square, differentiation, integration, limits and other mathematical

actions are presented. Such an approach must serve to reduce the level

of uncertainty experienced by the user, especially if that user is not

mathematically sophisticated.

The interface offered by MathMaster proved advantageous for Patrick in

developing his “Think of a Number” game. He first attempted to use

Theorist  to enter a series of mathematical operations which would

eventually return him to the value of the original variable. The result

was an expression of the form 
2n - 6

2  + 3, which he found daunting.

Using MathMaster Patrick was able to select each operation in turn,

building up the expression by degrees, and having the program simplify

it as he progressed, while keeping a visible record of each step in the

process.
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Within the instructional modules of the Exploring Algebra program and

within the MathPalette, this problem was addressed directly through the

inclusion of a ToolKit menu, which listed those mathematical functions

available, from Simplify, Expand and Solve to Animate, Areas under

Curves and 3D Graphs. Selecting an option presents the user with a

brief description of the available options and access to the tools which

provide these. Selecting Expand, for example, the user is informed that

expressions may be expanded using MathMaster or CoCoA, with an

outline of how to access these features within these programs. Buttons

are available for each which automatically open the selected tool, and

the user may then carry out the desired operation. In this way, students

are assisted in access to both the range of available mathematical

actions and the available software tools which offer these.

The nature of the algebraic learning environment may be examined

using constructs developed by Valsiner (1984) derived from Vygotsky’s

Zone of Proximal Development. Valsiner suggests that learning may be

facilitated by first focusing the attention of the learner upon that to be

learned by restricting the “Zone of Free Movement” (ZFM) and then

encouraging desired actions which occur within a “Zone of Promoted

Action” (ZPA). These elements feature strongly within the design of the

computer-based instructional modules developed for this study. The

computer environment serves as an inhibitory mechanism which

actually promotes and encourages the use of the software tools as

means of achieving desired mathematical actions. By making such tools

familiar and easily accessible, students are encouraged to use them.

At the same time, the role of the tutor is a critical one. Wood’s hierarchy

of “levels of control” (Wood, 1986) suggests that the learner may be
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assisted across the zone of proximal development by judicious use of

scaffolding by the tutor. Too much support and the learner fails to

achieve independence; too little and the learner is overcome by

uncertainty and becomes frustrated. Wood suggests that the support of

the tutor be made contingent upon the response of the learner: each

correct response by the student involves some withdrawal of tutor

support, while each incorrect response initiates increased intervention.

Wood defines five levels of control in this regard, from minimal

intervention (involving broad general verbal suggestions) to actual

demonstration by the tutor:

Level 0: No intervention

Level 1: General verbal prompt (“What else could you do?”)

Level 2: Specific verbal prompt (“You might use your tools here.”)

Level 3: Indicates materials to be used (“Why not use a graph

plotter?”)

Level 4: Prepares materials (selects and sets up tool for student.)

Level 5: Demonstrates use of tool.

 This model was adopted by the tutor in his interactions with the

students in this study. Although intervention was intended to be

minimal, Figure 8.9 displays a clear tendency towards dominant control

by the tutor. Note that examples of “non-intervention” are not included

in this display - those incidents in which the students took the initiative

in selecting and using the tools. Such occurrences were, however,

relatively rare and the principal conclusion to be drawn from the results

in Figure 8.9 centre upon the general reluctance by the students to

make free use of the available tools.
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Figure 8.9: Frequency and degree of tutor intervention
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If uncertainty is perceived as occupying one extreme in the

mathematical encounters of individuals, then confidence lies clearly at

the other pole. Under what circumstances are students likely to be most

confident in their dealings with mathematics, and what is the

relationship of tool use with student confidence, particularly with

regard to their own solutions? Increasingly the attention of the

researcher was drawn to issues associated with student confidence

after several participants commented upon their own perceptions of

whether a particular response was or was not correct. Specific data

were gathered which proved revealing of the relationship between

confidence and tool use in the learning of algebra.

At various times each of the students engaged in “quizzes” or “reviews”

as part of their progress through the instructional modules. These

generally consisted of ten multiple-choice questions which simulated

traditional assessment components which might be associated with

particular topics. In order to further simulate “school-type” assessment,
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in most cases the software tools were not immediately available.

Students were asked to attempt the questions themselves, unaided.

They would then either select what they saw as the correct response or,

in some cases, check their answer with selected tools before selecting

from the given responses. As has already been mentioned, attempts

were made to motivate the students to try to attain the highest possible

scores: two marks, for example, would be awarded if their first response

was correct, and a mark deducted for each incorrect response. It was

sought to encourage the students to verify their answers (using the

software tools if necessary) rather than simply offer their first response.

Such validation appears compatible with a high level of responsibility

for their own learning, and conducive to active participation in the

learning process.

Consider the following excerpt from Andrea’s record, in which she is

attempting two questions from the “Elementary Algebra Review”:

Comment: 5:03:35 PM
Expanding (x-2)(x^2+2x+4) I got x^3-8 first and then changed it to +8,
then back to -8 (after seeing the answers).  I am about 45% confident.
*************************
Comment: 5:07:02 PM
After checking it on the computer I am now 85% confident.
*************************
Comment: 5:10:56 PM
For (6x^4yz^2)/(-12xy^2z) I got (x^3z)/(-2y) and am 85 % confident.
*************************

Andrea was permitted to use the computer tools before nominating an

answer. Her confidence after checking these two questions rises, in the

first case from 45% to 85%. Note, however, that even after checking,

she is not 100% confident in her response. This pattern continued

through the subsequent “Elementary Trigonometry Review”, in which

most (validated) responses again rated only 85% (and one 90%)
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confidence, while those results which were not validated rated only 40-

50% confidence. Clearly, Andrea is generally not confident of her

answers to such questions. The fact that, even after validating answers

using appropriate computer tools, she still does not express 100%

confidence appears to reflect this general lack of confidence in her own

abilities, rather than her perception of the computer tools as being

inadequate.

The same pattern continued, even when attempting the “Beginning

Algebra Review”, which involved questions which, while not difficult

algebraically, appeared in a format which Andrea found unfamiliar.

Later in this review, however, she appeared to become more

comfortable:

I think it is y = 2x+3: 90%
*************************
Button :  E*
Card: BA quiz 9
*************************
Comment: 5:11:28 PM
y=3x-2: 3x-2=43 -> x = 15: Confidence 85%
*************************
Table: 5:12:22 PM
function2  :  y=3x-2
*************************
Comment: 5:13:12 PM
Confidence 100%: The computer proved to me that it is right.
*************************
Button :  B*
Card: BA quiz 10
*************************
Comment: 5:14:26 PM
100% because it is just like simplifying.
*************************
Button :  A*
Card: Score Card
Button :  Back to the Start?
Andrea 25/7/94 5:15:20 PMThe score was 15
We used it to check my answer and to increase my confidence rating.  It
was effective, since after I plugged in the formula which I thought it
should have been and I saw that the values were correct.
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Her comment that the “computer proved to me that it is right” suggests,

not only faith in the technology, but confidence in her own ability to use

the tool (in this case, the table of values) appropriately. As has been

observed elsewhere, the table of values proves a most convincing

representation.

Finally, Andrea’s attempt to answer questions from the “Curves Review”

with the assistance of the graph plotter saw her increase her confidence

rating from 40% to 100% in one case, because “the computer proved it

and I'm not going to argue with the computer”.

The pattern of tool use was repeated consistently, not only for Andrea,

but for each of the student participants: use of appropriate computer

tools resulted in an increase in confidence in the proposed answer. For

Ben , for example,

For 8p^3+64 my CONFIDENCE is 100% because I did on the computer...
My CONFIDENCE in solving the equation went from 80% to 100%...
1993: 2U Q1(a) 8.1 CONFIDENCE 50%, checked twice - confidence 100%

Stephen, too, while preferring to trust his own manipulative skill,

nonetheless expressed an increase in confidence after using Theorist, on

one occasion from 40% to 90-100%.

The evidence clearly supports the assertion that use of appropriate

mathematical software resulted in increased confidence in the solutions

presented by the students, even to quite complicated questions. A

disturbing aspect of this data concerns the surprising frequency with

which students expressed levels of confidence at or below 50% with

regard to their answers to questions reviewing material with which they
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were familiar. Coupled with this lack of confidence in their own answers

is the persistent failure of these students to seek to verify their results

unless prompted to do so. Andrea proved the exception to this rule: she

regularly and spontaneously availed herself of software support when

she was uncertain of a result. For Stephen and Ben, however, their

reluctance to make use of computer assistance, even when they

expressed little confidence in their results, suggests again the influence

of a culture of mathematics learning which devalues the use of external

tools (the calculator appears to be the exception here) and within which

the primary goal appears to be to produce an answer, whether correct

or not. Students such as Ben in particular appear to view the

responsibility for their own mathematics learning as residing with

someone other than themselves.

An Overview of Tool Use

It is now possible to view the incidents of tool use which occurred

across all participants in terms of level descriptors which arise from the

data. As previously described, specific examples of software use may be

perceived as occupying positions at various points along a continuum,

which may be described in the following terms:

Level 0: Non-Use: Although the software is available and

appropriate, and the user has sufficient skill to use it, no

use is made.

Level 1: Passive: The user is content for the tools to be operated

by another, but takes no personal initiative.

Level 2: Random: Use is not goal-directed and bears no relation to

the context.
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Level 3: Reflexive: The user makes superficial and automatic use

of appropriate tools.

Level 4: Strategic: Use of the tools is deliberate, goal-directed and

insightful.

The relative frequency of occurrence of Levels 1 to 4 for the participants

is displayed in Figure 8.10. The number of actual incidents associated

with each level is considered as a percentage of the total number of

incidents of tool use by each individual. Thus, of my own seventeen

incidents of tools use, 4 were classed as reflexive (23.5%) and 13 as

strategic (76.5%) .

The students were alone in displaying passive use, and showed no

occurrence of random use - both owing to the presence of the tutor in

every interaction with the tools. Incidents of strategic use by the

students were more frequent than those of reflexive use (50% as

opposed to 34%), while this situation was reversed for the preservice

teachers, for whom the most common interactional type was reflexive

use. As expected, Group B showed a greater tendency towards strategic

use of the tools than did Group A, (23% of interactions as opposed to

13% for Group A).

Page 318



Learning to Use New Tools Using the Tools

Figure 8.10:  Tool Use as Percentage of Incidents
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Figure 8.11:  Patterns of Tool Use (Group A) - Number of incidents
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Figure 8.12:  Patterns of Tool Use (Group B) - Number of incidents

30

25

20

15

10

5

0
B1 B2 B3 B4 B5 B6

PASSIVE RANDOM REFLEXIVE STRATEGIC

All Group B participants showed some strategic use of tools, while both

A1 and A6 showed no evidence of such use. Tool use by both groups
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was dominated by reflexive activity, with some occurrence of random

use in their early encounters.

Figure 8.13:  Patterns of Tool Use (Students) - Number of incidents
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The pattern of tool use for the students was quite different from that of

the preservice teachers. While all engaged in some passive use of the

tools (as the tutor demonstrated them), strategic use dominated the

interactions for all but Patrick (S6). Andrea showed least reflexive tool

use and Tony the highest incidence of strategic use (largely through his

interactions with the utilities available within the Exploring Chaos

module.) It is likely that the influence of the tutor must be considered

as a significant factor in influencing the students in their high level use

of the available tools; such was a specific and explicit priority of the

instructional component of the study. The reluctance of most students

to freely engage in tool use has already been noted; the fact that, in

spite of this hesitancy, all students engaged meaningfully in

mathematical interactions with the software must be considered a sign
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of success with regard to the technology-rich algebra learning

environment created.

Figure 8.14: Breakdown of Tool Use by Tool Type
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When the levels of tool use are considered in relation to the major tool

types used for this study (Figure 8.14), several features appear

significant. The high incidence of passive tool use for computer algebra

reflects the priority accorded this tool type within the study. It suggests,

too, that the other available tools were seen as requiring less specific

instruction. The high frequency of reflexive use related to the graph

plotter supports the observation that most use of this representation

was of a visual rather than an analytical nature - users would quickly

observe and draw required information from the graphical image and
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then move on to the next task. It is possible, too, that automating

access to the graph plotter using hypertext facilities within the modules

may have served to encourage reflexive tool use at the expense of more

considered and analytical approaches.

Consideration of level of tool use in relation to content area adds further

support to this criticism of the ease of access to the graphical

representation. Those modules which most encouraged superficial

viewing of graphs by simply “clicking” on algebraic forms as they

occurred (Curve Sketching, Completing the Square, Coordinate Geometry

and Calculus) were those most strongly associated with reflexive use of

the tools. As has already been observed, strategic use appears to be

most commonly associated with open-ended tasks which offer

opportunities for exploration, while reflexive use most often coincides

with those activities involving highly structured and predetermined

instructional sequences.

Figure 8.15: Breakdown of Tool Use by Content Area
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Nine

Toward a
Grounded Theory

The many pieces of the puzzle have now been laid out and examined.

Their properties have been teased out, leaving only the final stage of the

process - putting the pieces together in relation to each other in order to

form a coherent whole. To this end, the grounded theory method offers

what is termed the “paradigm model” as a guide to those features

considered most important in developing a theory which is to be dense

and coherent, offering an integrated and explanatory description of the

phenomenon under consideration. Such a theory has been lacking up

to this point, with concerns related to classroom use of technological

tools taking precedence over the necessary study of individuals

interacting with mathematical software.

The action research problem which gave rise to this study involved

“learning to use new tools”. The grounded theory of software use

proposed offers substantive contribution in this regard. For

practitioners seeking to use such tools to enhance their own teaching

and learning of algebra within technology-rich environments, the

detailed case study descriptions and the subsequent grounded theory

allow them to experience vicariously the interactions and encounters,

the successes and failures of the teacher as researcher in this context.

They may then judge for themselves the extent to which these

Page 324



Learning to Use New Tools Toward a Grounded Theory

experiences are congruent with and informative of their own situations.

The  study offers, too, a wealth of detail regarding a new and rich aspect

of mathematical pedagogy. It suggests new questions and new

implications for further research in an increasingly significant domain.

The paradigm model offered as the principal tool for grounded theory

analysis (Strauss and Corbin, 1990, p. 99) requires detailed

consideration of the phenomenon in question in relation to causal,

contextual and intervening conditions, action/interaction strategies

and, finally, consequences. As outlined in Chapter One, this model

relates the various components to offer a unified and integrated whole.

(a) PHENOMENON or CORE CATEGORY

This chapter first considers the core category, or “phenomenon” for

this study: mathematical software use. As a result of the analysis

of data from the various respondents, it is now possible to offer a

detailed description of the nature of such use, in which various

contributing factors define its frequency and form. This form is

recognised as composed of quite distinct dimensions, ranging from

non-use and passive use at one extreme, to strategic use at the

other. As previously noted, this phenomenon of strategic software

use occupies a position of central concern in the present study,

representing as it does a powerful and desirable condition for

learning.

(b) CAUSAL CONDITIONS :

Having defined the central phenomenon in terms of its specific

dimensions, it may now be situated in relation to the key causal

condition which defines its occurrence, a cyclic framework which
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relates the mathematical situation, its interpretation and

subsequent action on the part of the learner, and the subsequent

evaluation of the result of this action. This places the tool use in

relation to both user and learning environment.

(c) CONTEXT

The nature of the tools themselves and of the learning environment

provide the contextual  conditions under which the phenomenon

takes its specific form. It is possible now to identify those features

associated with “good” mathematical software in the context of the

algebra learning experiences encountered in this study. It is

possible, too, to identify desirable features of the learning

environment, under which conditions, strategic software use is

considered most likely to occur.

(d) INTERVENING CONDITIONS

Aspects of mathematical and pedagogical thinking served as the

key intervening conditions identified in this study. Of the former,

preferred imagery and the extent to which various algebraic forms

signalled action strategies on the parts of the users were most

significant; beliefs concerning the nature of mathematics and

algebra, and the ways in which these are best learned were also

identified as critical in determining the extent and form of

mathematical software use.

(e) ACTION/INTERACTION STRATEGIES

The ways in which the various individuals and groups actually

used the available software tools was considered in detail in

Chapter Eight, and these are here identified as action/interaction
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strategies. It is difficult to extrapolate beyond the confines of the

present sample, but quite distinct usage patterns were identified,

and these may certainly inform the actions and planning of other

practitioners, and perhaps form a basis for subsequent research.

It is possible to identify two ways in which the available tools

(especially computer algebra tools) were found to be most effective

in this study: as support for extended mathematical manipulative

processes (such as equation solving and completing the square),

and as support for investigation and exploration of problems and

mathematical concepts, freeing the user of manipulative

constraints.

(f) CONSEQUENCES

Specific positive and negative consequences of the use of the tools

in the current context may be clearly identified. Positive results

included increased confidence and improved representational

repertoires on the part of all participants. At the same time, some

evidence was found of misunderstandings and over-dependence on

the tools by some of the participants. Consequences must be

viewed within the framework of the various contextual conditions

already identified.

The network of relations thus created ensures that the subsequent

theory is dense in both descriptive and explanatory power, raising the

level of abstraction from initial grounding in the data to a well-

developed substantive theoretical position. The resultant theory is then

considered in the light of related research, and implications for practice

and further enquiry.
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The Phenomenon of Mathematical Software Use

Within a given algebra learning context, software use is most likely to

take the form dictated by a particular tool type. In the present study,

these were primarily:

• Algebra tools (principally for representation and manipulation)

• Graph tools (for representation)

• Number tools (for representation)

• Utility functions (particularly facilities for substituting, solving

and calculus available within the MathPalette and versatile tools

such as xFunctions.)

Within these various tool forms, a range of properties has been

discerned as defining the nature of the tool use. These were found to

include:

• purpose (whether for verification of results, for representation,

manipulative support, exploration or simply for convenience);

• goal-directedness (the extent to which goals were well-defined

and achievable, and the persistence shown in working

towards these);

• versatility (particularly with regard to the use of a range of

tools and access to several appropriate representations);

• confidence (in both use of the software tools and in the

mathematical results obtained);

• motivation (both intrinsic, resulting from interest and

curiosity, or extrinsic, resulting from the demands of teacher

or assessment).
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The specific dimensions, or “levels”, of mathematical software use have

already been described in the context of their occurrences within the

data. It is now possible to define these dimensions in terms of the

properties of tool use given above.

Strategic software use may serve a variety of purposes, involving at

different times all of the categories mentioned above. While open-ended

exploration is most readily associated with this level of software use, it

also frequently involves verification of results, which is active and often

versatile (as the user deliberately and thoughtfully uses available tools

as means to validate findings and to support conjecture). Strategic tool

use also involves both representational and manipulative actions as

mathematical responses.

Strategic use is most clearly defined by its highly goal-directed nature.

The selection and use of available tools is deliberate and thoughtful,

with clear intention to achieve a particular desired end. It is frequently

versatile in the use of both varied representations and a range of

appropriate mathematical and computer-based strategies. Verification

of results is commonly achieved through multiple sources. Confidence

associated with strategic use is high, both with regard to the

mathematical strategies deliberately chosen and with regard to the

results achieved, and motivation may be expected to be dominated by

intrinsic factors, especially interest and curiosity. While such use may

have been initiated from external sources (such as the prompting of a

teacher or tutor, or the requirements of an assessment task), without

this critical feature of intrinsic motivation, the tool use appears unlikely

to exhibit the important element of persistence, which appeared as a

significant factor within this study.
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Reflexive tool use appears more limited than strategic use in most

regards. In terms of purpose, reflexive use is most commonly associated

with verification of results and representation, and least commonly with

exploration and manipulation. While goal-directedness may be high in

some instances, reflexive use commonly features a lack of persistence

on the part of the user, and a limited representational repertoire. In

fact, such use was observed most commonly associated with a single

representational category - the graph plotter. Confidence varies with

such use, from very high to very low, and motivation for such use may

be expected to be external, with less personal commitment on the part

of the user than was observed for strategic use.

Random use of mathematical software may be considered a sub-

category of reflexive use. It was found only among the preservice

teachers who, especially in their early encounters with the software

tools, explored the limits of the “zone of free movement” offered them

within the confines of the computer modules, and used the tools freely

without regard for curricular context, or even any observable goal. Such

use, while occasionally versatile, was observed to be low in goal-

directedness and persistence.

Passive use was most clearly defined by being externally motivated. The

extent to which other factors were demonstrated was dependent upon

the intervention of the teacher/tutor, rather than the individual user.

While confidence may have increased as a result of such use, it was

also observed to result on occasion in decreased confidence and lack of

understanding, particularly when the tool use extended beyond the

zone of proximal development of the student. Such use by the tutor also
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served to discourage independence and initiative on the part of the

students , and so led to limited personal commitment.

Non-use of software tools was difficult to examine directly in the context

of this study since its occurrence can only be inferred rather than

observed. Nonetheless, it is a most significant aspect in terms of

understanding the phenomenon of mathematical software use, and

must be considered at this point. The most specific instances of non-

use of available tools were observed in association with the many review

exercises undertaken by the students. Since they had been encouraged

both to ensure to the best of their abilities that their responses were

correct and to use available tools to assist in this regard, the frequent

failure of individuals to do so when answering incorrectly may

reasonably be considered as examples of this type of tool use.

Stephen, for example, encountered fifty review questions on topics

ranging from beginning algebra and equations to general algebra

reviews and the “stress test”. Of these, he answered fourteen

incorrectly, but used available tools (computer algebra and table of

values) only four times, and these when prompted specifically. Of Ben’s

thirty-five review questions, seven were answered incorrectly and levels

of confidence frequently dropped to 60 or 70% prior to selecting an

answer, and yet these factors were not sufficient motivation for software

tools to be used.

Andrea demonstrated that use of the computer tools did not guarantee

a correct result every time - she showed no reluctance to use the

available tools when she was uncertain of her result. Of her fifty review

questions, she made only five errors since she regularly and on her own
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initiative verified her results using computer algebra, graph plotter or

table of values, whichever she considered appropriate.

It is a primary concern of the theory of mathematical software use

which follows to offer some insight into the conditions under which the

various dimensions of tool use occurred, and to seek to explain those

factors which may have served to both encourage and impede such use.

Now that the nature and dimensions of the phenomenon have been

detailed, it is appropriate to consider those conditions under which it

may be observed.

Causal Conditions

Figure 9.1 describes a cyclic framework within which the potential for

mathematical software use may be usefully situated. This framework is

made up of four components: an appropriate mathematical situation

in this context is considered to be one which elicits recognition of an

algebraic object (most commonly an equation, expression, function,

graph or table of values). Such an object may be explicit or implied. The

former is commonly associated with an algebra learning environment

dominated by an instructional perspective, composed of carefully

sequenced and deliberate learning activities. Such an environment

corresponds closely to the first two stages of learning as proposed by

van Hiele - the stages of information and guided orientation.
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Figure 9.1: A causal framework for mathematical software use
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An implied algebraic object demands both recognition and

interpretation on the part of the learner. While such high level cognitive

activities may be found at the lower levels of van Hiele’s stages, they are

more likely to occur within contexts of free orientation and integration.

Failure on the part of the learner to recognise an algebraic object within

a particular mathematical situation may not mean that no further

mathematical actions can be effected. It does, however, negate the

possibility of software tool use within that context, since such use

requires an object upon which to act.

Consider, for example, the “unemployment” problem from the module

Something to Think About which was attempted by both Stephen and

Ben. In this problem, information is presented regarding changes to

unemployment rates in a hypothetical country over a period of weeks
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following the election of a new government. While the information is not

amenable to use with available computer tools, careful interpretation

leads to the recognition of features more commonly associated with

curve sketching and calculus, but within an unfamiliar context. Once

recognised, the activity invariably resulted in insights regarding, not

only the applications of calculus to curve sketching, but also as to the

nature and purposes of the important concept of the derivative as a rate

of change. This was a rich mathematical exploration which did not

require software use, but certainly involved mathematical actions and

thinking.

Recognition of an algebraic object may be considered a condition which

is necessary but not sufficient for the occurrence of mathematical

software use. The object itself, then, must signal a mathematical

action from the repertoire available to the individual learner and the

nature of the object as perceived by the user will influence the way in

which it functions as a signal to act mathematically. Such a repertoire

will contain traditional algebraic actions (simplify, expand, factor, solve,

substitute, sketch, differentiate or integrate). Within the technology-rich

learning environment created for this study, however, all of these

actions were also available using software tools, in addition to

representational actions enhanced (and made possible) by the

computer, especially graphing, tabulating, and even animating. The

extent to which the individual learner has integrated both traditional

and computer-based mathematical actions must be considered a

critical feature in the use of software tools. The potential for tool use at

this point is largely dependent upon the extent to which such

integration has occurred. Of the students, only Andrea appeared to

display such integration, choosing freely from both traditional and
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computer-based approaches to given mathematical situations. While

the level of integration must clearly be influenced by the algebraic

thinking of the individual, the results of this study suggest that factors

associated with pedagogical thinking (attitudes and beliefs concerning

algebra and algebra learning) were far more influential as determinants

in the use of available tools.

Having recognised an algebraic object within a given mathematical

situation, the learner then chooses from a range of available actions

(which may or may not involve the use of software tools). Such action

produces a result which must be evaluated, usually in terms of an

expected outcome. It was common at this point for students to use

available software tools for purposes of verification of results which had

been obtained by traditional means. Potential for tool use at this point

was high, as the use of the computer for purposes of verification of

results appeared to be perceived generally as both helpful and

legitimate, in contrast to the use of the software to support and replace

traditional approaches.

Traditional mathematical actions as observed in this study tended to

move relatively quickly to a point of closure. Algebra was commonly

associated with obtaining an “answer”, usually through the application

of a well-defined sequence of steps. Such a perception is seen as largely

incompatible with a focus within the learning environment upon open-

ended exploration. In fact, the readiness with which even high ability

students such as Stephen would conclude their computations, even

while expressing less than full confidence in their results, was noted as

a source of some concern. When limited to traditional methods, then,
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the stage of evaluation appears likely to conclude the mathematical

process with brief verification using whatever means are available.

Use of computer tools, however, served to encourage a cyclic aspect in

this process. Even when used only for verification of results through

use of an alternative representation (such as viewing a graph to check

the solution of an equation), the user is presented with what is

effectively a new mathematical object or situation, requiring further

interpretation and the possibility of subsequent action. If the user

exhibits those characteristics associated above with strategic software

use (goal-directedness, versatility, perseverance and, most importantly,

curiosity) then the stage of evaluation may be expected to lead to a new

sequence of mathematical action, interpretation and reflection, and

such was observed frequently within the data.

Figure 9.2: Mathematical software use situated within a

causal framework
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Figure 9.2 situates mathematical software use within the causal

framework described. Both the stages of action and evaluation are likely

to give rise to tool use, the latter in a potentially cyclic way. The

potential for tool use, however, is limited by the degree of integration

present on the part of the user, dependent upon characteristics of user

(algebraic and pedagogical thinking), tool (interface and functionality)

and learning environment (the balance between challenge and support).

No single factor, then, can guarantee that mathematical software use

will occur. Rather, several key aspects of individual thinking play

important roles in deciding this phenomenon, and these will be detailed

as intervening conditions in this theory. Prior to this, however, it is

necessary to examine the role of specific contextual conditions within

this process.

Contextual Conditions

The context within which mathematical software use occurs is

considered in this study to be dominated by those factors associated

with both the mathematical software tools themselves, and the algebra

learning environment within which they are available. Both factors

served to define and direct the interactions of individuals with

mathematical tools.

With regard to the software tools themselves, the twin features of

interface and functionality appeared to figure strongly in determining

their use by both students and preservice teachers. Simplified entry of

algebra forms appeared to encourage such use - even the more

experienced users commonly made errors of entry, typing 4x instead of
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4*x when required. It was clear that the algebraic form required by the

software should mimic as closely as possible the usual written form.

Thus, 4 - 3x is preferable to 4 - 3*x, and x2 - 4x + 4 is to be preferred to

x^2 - 4*x + 4. All participants adopted the use of the option key for the

placing of exponents quickly and easily, providing simple access to the

two-dimensional formatting which is the norm for algebraic forms.

The creation of the “palette” as a means of simplified entry of algebraic

forms was an important aspect of the development of the algebraic

learning environment for this study. This method is used by such

quality Macintosh applications as Theorist and ANUGraph, and

appeared to offer an ideal means by which quite difficult algebraic forms

could be entered without recourse to specialised code or instructions.

The overall response to the palette, however, was disappointing.

Although participants used it when prompted, it was generally found to

be both cumbersome and slow, and keyboard entry (in simplified form)

was invariably the preferred option. Particular problems were found in

using the palette to create complicated expressions, especially those

involving fractions and exponents. Although improvements were made

in response to observed difficulties (such as automating the closing of

parentheses), the palette as a form of algebraic entry would need to be

far more intuitive than appears to be currently the case for it to be

preferred over simple keyboard entry procedures.

The functionality of the various software tools is, in some respects, a

complementary issue with interface. A significant factor in the strong

preference shown by all participants for the graph plotter as a

mathematical tool must be the fact that it does a single job well. Tools

which offer a wide range of mathematical choices are likely to act to
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increase uncertainty in student users. As Goldenberg (1988b) observes

regarding multiple representational software, “(w)hile potentially

reducing ambiguity, multiple representation also presents a student

with more places to look and is potentially complicating and distracting”

(p. 136). The same may be applied to much available computer algebra

software, frequently offering hundreds of potential choices for action. At

the same time, a broad range of functionality is a useful feature, and so

the critical factor appears to be the accessibility of the various

features. The range of available functions should be clearly visible to the

user and simple to access. Thus, programs such as CoCoA which

require specific command-line instructions and offer the user a blank

page and no useful menus from which to access commands must be

considered a poor choice. Even the Theorist interface fails to support

access to the full range of available functions in a way which is intuitive

to students.

As noted previously, the interface of the program Calculus T/L II

appears to satisfy this demand most effectively, making available those

functions appropriate to the current algebraic object, and so actively

reducing levels of complexity and uncertainty. It is unfortunate that this

program requires entry of algebraic forms in unsimplified format.

The development of the ToolKit menu across all instructional modules

was a deliberate attempt to reduce uncertainty and provide access to

available mathematical functions. In this way, algebraic forms could be

entered in simplified form (or using the palette if desired), and then

pasted into other software tools which are linked through the

HyperCard interface. While xFunctions, Theorist, MathMaster and other

commonly used software tools may each require entry in a different
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form, students using Exploring Algebra were provided with a simple and

consistent format for entry of algebraic forms which could then be

pasted into any of the available tools.

The evidence of this study suggests certain features which must be

considered desirable in algebraic software. The interface must be clear

and intuitive, with available functions clearly visible and easily

accessible. This is most readily achieved through the use of pull-down

menus which list available mathematical actions (and ideally such

actions may be accessed through visible on-screen buttons as well).

Entry of algebraic forms must be simple and closely approximate

written forms. The addition of some intuitive method for entry of

exponents (such as the option key or the “up arrow” key) is preferable to

the use of computer characters, such as “^”. Display of the algebraic

form must utilise full two-dimensional formatting, allowing users to

verify that they have entered the desired expression correctly.

Both graphical and tabular representations must be open to

manipulation, permitting adjustment of all parameters in addition to

quick and easy facilities for “zooming in” and “zooming out”. Axes must

be clearly labelled for graphs, and options should be available both for

grid lines and labelling in multiples of π. Flexible entry of algebraic

forms appears to be desirable as a means of encouraging versatile

thinking regarding algebraic objects. Thus, while an equation such as

“y = 2x - 1” may be the preferred form for both graphing and tabulating,

it should be possible to enter alternative forms such as “2x - y - 1 = 0”

and even expressions such as “2x - 1”.
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Manipulation of algebraic forms should be under the control of the

user, while supported by the software. If an equation is being acted

upon, for example, the program should automatically act upon both

sides, reinforcing and supporting traditional methods. A record should

be visible of each step of the interaction, allowing students to follow the

process by which their result was achieved. This computer-based

support and display of each step of an algebraic process was considered

by the students in this study to be the most useful feature of the

computer algebra software which they used. At the same time, there

were frequent occasions within the tutorial situations in which a quick

result was desired in order to verify a computation. At such times, a

computer-generated result encouraged both verification and further

exploration. For this reason, ToolKit facilities were added for a range of

common mathematical processes which involved quite complex

computations, including equation solving, derivatives, areas under

curves, and even loan repayments. Having ready access to such

features permitted strategic use of the software as a convenient means

of checking both results and conjectures.

It appears that “good” algebra software should support both the

development of algebraic processes and convenient access to a variety

of algebraic results. It should offer at least symbolic, graphical and

tabular representations, and facilitate movement and transfer of

information between these. Access to the various mathematical

functions of the software must be clear and intuitive in order to

minimise uncertainty and to encourage integration of computer-based

mathematical actions with more traditional methods. Above all, the

user must feel “in control” of the software, not controlled by it. The ease
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with which, for example, the user may return to a previous line and edit

the contents rather than retyping demonstrates such a level of control.

The nature of the algebraic learning environment must also bear

strongly upon the use of available mathematical tools. The results of

this study suggest that, in order to encourage strategic tool use, the

environment should be challenging and open-ended. Highly sequenced

and predetermined instructional programmes are analogous to teacher-

dominated classrooms - they tend to stifle initiative and curiosity, and

reward task completion at the expense of enquiry and exploration.

An important result arising from this study concerns the availability of

software tools: it appears that such tools can be too available under

certain circumstances. High incidence of reflexive tool use appeared

clearly linked to the hypertext design feature in which it was possible to

access the graph of any algebraic form encountered in the instructional

modules simply by clicking on it. This feature appeared to encourage a

superficial viewing of the representation, and, frequently among both

students and preservice teachers, an automatic response to moving

through the program. In order to encourage more active participation,

users should actually enter each algebraic object themselves, and then

act upon it in whatever way they choose. As mentioned previously, this

reconstructive act is likely to force a more analytical viewing of the

algebraic object under consideration, and to actively discourage the

superficial and passive approach observed commonly in relation to

reflexive tool use.

There were other respects, too, in which the design and nature of the

computer tools themselves may have contributed in a negative way to
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student learning and understanding of key mathematical concepts,

particularly those associated with the domain and range of functions.

The graphing utility developed for the project (based upon a simpler tool

created by Dr Khoon Yoong Wong of Murdoch University) was a

powerful and versatile package, but was unable to correctly plot

discontinuous functions. Thus, single point discontinuities (such as

that across the origin in the hyperbola xy = 1) were joined by a line from

the bottom of the screen to the top. Graphs of such important functions

as y = log(x) and y = x, which are undefined for negative values of x,

actually plot the value x = 0 along the x-axis in this undefined region.

This aspect of the technology was not noticed by the respondents, but

may have contributed to subtle misunderstandings. The same

misunderstandings may have resulted from the activity in the Beginning

Algebra module in which the relationships between family members

were discussed as an illustration of the function concept. While the

relationship “is the wife of” was identified as a function in the

mathematical sense, the program failed to draw attention to the

important role of domain and range in this context. In particular, it was

overlooked that, for the domain in this case (the members of the family),

the relationship is undefined for all but one member. Although such an

approach to this important mathematical concept is appealing, it is now

recognised that it is fraught with dangers and likely to cause confusion

and subtle misunderstandings. The tools and the nature of the learning

environment itself must be mathematically correct in all respects if they

are to be effective in building firm foundations for further study.

Mathematical situations within a technology-rich learning environment

should serve to stimulate enquiry and exploration, in addition to

discussion and cooperative strategies within social learning contexts.
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Van Hiele’s third stage of learning, explicitation, specifically demands

verbalisation as a means towards achieving cognitive progression, in the

same way that Vygotsky’s theories place social interaction at the heart

of effective learning. In this regard, the computer plays a particularly

significant role for algebra learning, since it makes explicit both the

objects of attention and the processes by which these are acted upon.

By making public algebraic thinking and action, mathematical software

tools uniquely encourage shared meaning among co-learners, and

support insightful evaluation of student thinking and understanding by

their teachers.

Finally, a technology-rich algebra learning environment should be

characterised by versatile thinking about algebraic ideas using multiple

representations, with explicit attention directed towards developing

active and meaningful links between these. Such thinking may be

encouraged through the thoughtful use of open-ended tasks which

appear accessible to the students and yet offer challenges which

suggest the use of appropriate tools. For teachers, “learning to ask new

questions” remains a critical aspect of “learning to use new tools”. The

role of the teacher within such an environment must be a flexible one -

encouraging individuals to go beyond their present capabilities, and yet

not allowing them to become too dependent upon their scaffolding tools.

The zone of proximal development remains a concept central to an

understanding of such a learning environment, one in which “the only

‘good learning’ is that which is in advance of development” (Vygotsky,

1978, p. 89) and where it is accepted that “what a child can do with

assistance today she will be able to do by herself tomorrow” (Vygotsky,

1978, p. 87). Such a view appears unusual within the context of algebra

learning, where traditionally the greatest effort has been placed upon
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the acquisition of manipulative skills by individuals working alone and

unaided. The technology-rich learning environment defined within this

study is characterised by two essential features: challenge and

support. The tension between such a view of learning and traditional

approaches has led to the identification of a mathematics learning

culture which, with aspects of algebraic thinking, may be considered as

intervening conditions within a theory of mathematical software use.

Intervening Conditions

Both mathematical and pedagogical thinking function as intervening

conditions with regard to mathematical software use within an algebra

learning situation, potentially impeding or encouraging such use for

different individuals.

This study clearly demonstrates that a given algebraic object may be

perceived in a variety of ways and associated with a range of action

strategies. While simple linear and quadratic equations and graphs

signalled predictable responses, simple expressions and tables of values

proved more difficult to interpret. Both students and preservice

teachers responded to what may be seen as a powerful drive towards

closure related to their algebraic actions, a drive frustrated by such a

simple expression as 4 - 3x. When Sfard and Linchevski (1994) asked

what individuals see in an expression such as 3(x+5) + 1 (p. 191), they

examined the results in terms of Sfard's theory of reification, involving a

conceptual move from viewing mathematical concepts as procedures to

viewing them as objects, capable of being acted upon in their own right.

This study examined simpler objects and found similar perceptions, but
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focused more closely upon the signal character of such objects and the

subsequent repertoire of mathematical actions which they elicited.

Familiarity with graph plotter and table of values served to increase this

available repertoire for all participants, offering at least two new

strategies for use with what was found to be an impoverished algebraic

form.  Computer algebra software, however, offered no such addition,

merely an alternative approach using traditional methods supported

within a computer-based context. The ability of students to integrate

the two approaches may be recognised as a determining factor in the

use of algebraic manipulation software. This study suggests that such

integration may begin early in the formal study of algebra, framed

within meaningful context and following upon quite extensive use of the

tabular representation. The manipulations of algebra must be grounded

in numerical understanding.

The selection and use of available mathematical software tools, then,

will be influenced by the algebraic thinking of the user. Algebraic forms

which traditionally have signalled a graphical representation (such as

the form y = 2x - 1) were found in this study to trigger the use of

graphing software frequently and spontaneously by all participants.

Although the table of values was frequently described as very helpful, it

remained a subservient representation to the graph, probably because

of difficulties encountered in interpreting tabular information which

have been reported elsewhere. Ryan (1993, p. 369-370), citing work by

Herscovics (1989) on cognitive obstacles and Yerushalmy (1991) on

multiple representational computer software, observes that particular

problems arise from the use of multiple representations and the table of

values in particular. These include over-reliance upon a single
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representational form and the assumption that students will naturally

and spontaneously “make connections” between different

representations. An extensive study by MacGregor and Stacey (1995)

involving over 1200 students in two Australian states further supported

findings which indicate that tables of values present quite substantial

problems of interpretation and analysis. Particular steps need to be

taken in order to build effective skills of intrepretation for this

representational form (MacGregor and Stacey, 1995, p. 83). At the same

time, the table of values was generally considered a valuable aid to

understanding within the current study, and perceived by some

participants (particularly Stephen and Tony) as a more flexible tool than

the graph plotter, capable of acting upon expressions such as 2x - 1 in

addition to the more usual form given above.

Stephen's perception of algebraic forms generally appeared to be

dominated by an “input/output” or “function machine” metaphor, an

active view involving numerical values being changed according to the

functional rule. Such an image influenced, not only his interpretation of

tables of values (with which this image identifies most readily), but also

his thinking about graphs and symbolic forms. The robustness of this

active conception may help to explain Stephen’s cross-representational

facility and his general success in algebra in comparison with his peer,

Ben, who was strongly influenced by a visual graphical metaphor,

which did not transfer easily across representations in the same way as

did the function machine image. Dependence upon the graphical form

alone appeared to disadvantage Ben in his approach to algebraic

problems. Although Andrea displayed evidence of both graphical and

input/output imagery. her thinking appeared dominated by the

symbolic form, especially the equation. It seems likely that her frequent
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use of the full range of available software tools contributed towards the

cross-representational facility she displayed, but her preference for the

symbolic form puts her frequent use of computer algebra tools into

perspective, in the same way that Ben’s strong tendency to visualise

helps to explain his use of the graph plotter. Such interaction between

thinking and tool use supports the hypothesis of a recursive

relationship between the two offered early in this study.

The use of available tools, then, is influenced by the algebraic thinking

of the user, and such thinking may come to take the form associated

with preferred software tools. Individual perceptions of a given algebraic

object and the repertoire of available mathematical actions which it

signals may vary greatly, and so determine the nature and direction of

tool use. Critical factors appear to be preferred images of algebra,

familiarity with the software tools and the degree of integration of

traditional algebraic actions with computer-based strategies. Algebraic

thinking, however, must be considered in conjunction with pedagogical

thinking regarding algebra learning if variations in software use are to

be better understood.

In considering the beliefs and perceptions of the participants in this

study regarding the nature of algebra, the ways in which it may best be

learned and the role of computers in this process, consistent evidence

was found to support the notion of a culture of mathematics learning: a

shared set of beliefs and experiences which extended across all groups

of participants. This culture served largely as an impeding factor for the

use of algebra software, characterised as it was by such features as:
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• a view of mathematics as “answer-based”, devaluing

exploration and open-ended problem solving (those areas in

which the software appears most effective);

• a view of algebra as primarily serving a symbolic

representation purpose, with little usefulness beyond this

role;

• an emphasis upon individual efforts, devaluing both group

approaches and the use of external aids (such as computer

tools);

• a strong reliance upon individual as opposed to group aids -

especially textbooks and hand calculators;

• a dependence upon the teacher as source of knowledge and

direction in mathematics learning;

• a limited representational repertoire, dominated by symbolic

and graphical forms;

• a lack of reliance upon individual judgement and confidence

with regard to their mathematical processes - students

appeared quite happy to conclude an answer while expressing

little confidence in their result.

Clearly, factors such as these militate against both the use and the

perceived need for open-ended software tools which support and extend

mathematical learning. These findings are consistent with the results of

other research conducted both in Australia and overseas. Wood and

Smith (1993) used a questionnaire adapted from Schoenfeld (1989) to

elicit attitudes and beliefs about mathematics from students beginning

mathematics and engineering degrees at a New South Wales university.

Although such relatively high ability students exhibited positive

attitudes and intrinsic motivation with regard to mathematics, three-
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quarters of the sample of seventy four students felt that school

mathematics was “mostly facts and procedures that have to be

memorised” (p. 594). Alternative approaches to solutions were

considered highly desirable (96%) but almost half (44%) felt it was

important that mathematics teachers show students “the exact way to

answer test questions” (p. 595). Most students felt that a “typical

homework problem” should take less than ten minutes (p. 596).

School mathematics in New South Wales is heavily influenced by

external examination, and this must exert a powerful effect upon

student perceptions and beliefs.  A study in progress by Barnes, Clark

and Stephens (1995) which compares links between assessment and

teaching practices in New South Wales and Victoria has found that

teachers in both states value most highly those things associated with

high stake assessment. New South Wales teachers (56 teachers in 11

schools) were found to value most strongly “the application of

mathematics to real world contexts” and “the use of different

mathematical skills in combination” (associated with both School

Certificate and Higher School Certificate examinations) and gave low

value to “extended and open-ended activities, development of report

writing skills, mathematical journals and the provision of substantial

written comment on problem solving attempts”. The development by

students of investigative skills was rated most highly by Victorian

teachers and least highly by those in New South Wales.

The powerful influence of mandated assessment upon teaching practice

suggested by this study and the previous “ripple effect” study by Clark,

Stephens and Wallbridge (1993) suggests a potential role for

assessment in encouraging the use of technology in schools. In the
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short term at least, the use of mathematical software tools with open-

ended assessment tasks appears a potentially useful way in which to

introduce the use of technology into classroom practice.

At the same time, the mathematics learning culture observed within the

current context is clearly not restricted to New South Wales schools. An

extensive study by Garet and Mills (1995) involving almost 400 head

teachers of mathematics in the United States examined the influence of

the National Council of Teachers of Mathematics Curriculum and

Evaluation Standards upon curriculum content, teaching practices, use

of technology and assessment procedures in first-year algebra courses

(equivalent to Year 9 in Australia).

The data indicate that lecture-discussion and in-class problem sets remain the
dominant mode of instruction in first-year algebra... the use of calculators has
grown dramatically since 1986... The use of computers, although not as
extensive as the use of calculators in 1986 and 1991, is expected to increase
substantially by 1996... the use of short-answer tests is not declining and
remains the dominant form of assessment (p. 382).

Software use was dominated by graph plotters (54% of departments

reported using these), drill-and-practice packages (49%) and exploratory

packages for algebra and geometry (45%). Only 29% reported use of

spreadsheets, and 21% used symbolic manipulation packages.

Although cost and hardware factors were considered significant, the

strong preference for graph plotting tools and the relatively minor use of

computer algebra is supportive of the findings of the current study.

Textbooks remain a major influence upon teaching practice.

When considered within the context of earlier studies of exemplary

practice in Western Australia and the United States by Tobin and

Fraser (1988), the existence of a prevailing culture of mathematics
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teaching and learning which was so evident within the present study

appears irrefutable. The dominant influence of such a culture upon the

selection and use of available software tools, then, occupies a central

position within the grounded theory of mathematical software use

proposed.

Action/Interaction Strategies

The active selection and use of mathematical software tools occupied a

central point of focus within this study. Tool-based actions arose in

response to the contextual and intervening conditions already

considered - the nature and knowledge of available tools, the curricular

context and perceptions of the algebra learning environment, and the

mathematical thinking elicited by the given situation.

The most frequent mathematical actions for which software tools were

used were those associated with graphing (representing), substituting

and solving, corresponding to the three main perceptions of the

purposes of algebra, as defined by the participants. At a higher level of

abstraction, the computer was used most frequently to represent, to

verify and, on the part of the tutor, to demonstrate.

Representational actions dominated the computer-based interactions

observed within this study. As has already been noted, the graphical

form was preferred in most situations, and the students quickly became

proficient in the use and interpretation of this software tool. Most

effective for this purpose was a “Guess My Rule” game within the IBM-

based program A Graphic Approach to the Calculus, by David Tall. The

computer generated the graph of a selected function type, and students
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would attempt to identify the particular function. Their guess was

graphed, providing immediate feedback. Reluctant at first to make

mistakes, the students at all levels quickly overcame this hesitation and

learned to use strategic trial-and-error methods to identify different

functions. This technique proved so effective that it was incorporated

into the MathPalette using both graphical and tabular representations.

Once again, it encouraged in students familiarity with both

representations, and assisted Andrea in particular to become

comfortable with the table of values.

Manipulative actions centred upon evaluating substitutions and solving

equations. As mentioned previously, the Theorist interface encouraged

and rewarded both these activities, and a preference was shown by all

students for the equation-solving method of moving terms across the

equals sign, which was the method supported by this package. While

such an approach appears appealing as the preferred method for

experienced practitioners, it is also common to find it linked to

superficial understanding and rote learning of the solution process, A

study by Bell, MacGregor and Stacey (1993) of a group of twenty Year

Ten students in a Melbourne school found frequent recourse to what

were described as “action memories” in solving simple linear equations.

Such memories were tacit, and students were unable to justify their

approach. They were also frequently associated with incorrect

responses, since the method did not allow for variations in the equation

form.

Although the student participants in the present study demonstrated

competence in equation solving, both with the computer and without,

the method of acting upon both sides of an equation in order to produce
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a solution would seem pedagogically superior, and computer algebra

packages which support this approach preferred. (Note that while

Theorist does support both methods of equation solving, the

manipulation method is so much easier to use that it becomes the

preferred option by default.)

As an instructional tool, computer algebra software, then, seems most

effective within two situations. The first involves the step-by-step

support of extended mathematical processes (such as equation solving

in the junior school, “completing the square” in the middle school, and

“differentiation by first principles” in the senior years). These processes

tend to place high manipulative demands upon students, and so are

well-suited to treatment and study using computer algebra tools.

Computer algebra software is also likely to be most effectively used

within open-ended mathematical explorations, minimising manipulative

barriers and supporting processes of enquiry. As noted within the

study, strategic software use occurred most frequently within such a

context, in which students were challenged and motivated. Such

explorations are not a frequent feature of current mathematics learning

situations. However, such use may potentially be encouraged within

alternative assessment schemes, in which software tools are made

available as a strategic option. The problems gathered and developed for

this project are appropriate for use as extended individual and group-

based assessment tasks, while actively serving to encourage and

demonstrate the use of software tools. As noted in relation to the “ripple

effect” studies (Clark, Stephens and Wallbridge, 1993, Barnes, Clark

and Stephens, 1995), it is likely to be through such assessment

schemes that the use of mathematical software will most readily be
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integrated into the existing curriculum. Computer tools which make

explicit the step-by-step mathematical processes leading towards a

solution appear most appropriate for use in open-ended assessment

tasks. Word processors have encouraged new approaches to creative

writing by making possible a cyclic process involving the refinement of

several draft versions. Students using appropriate algebra software may

also see their final solution as the end result of an interactive process of

refinement, supported by teacher, peers and the software itself.

Consequences

Not all the outcomes which emerged from the use of mathematical

software tools in this study were intended. Stephen, for example,

believed it necessary for a function to be expressed using a particular

format: ƒ(x) = 2x - 1 is a function for Stephen, while 2x - 1 is not.

Further, 2x - 1 cannot be graphed (although it can be represented in

tabular form), while y = 2x - 1 can. Such misconceptions, while

perhaps not serious, arose as a direct consequence of particular

features of the software packages which this student had experienced.

The use of computer tools with students at all levels, then, must take

into account effects such as these. Similarly, Ben’s dependence upon

the graphical representation must be directly attributed to his

encounters with the technology. After becoming comfortable and

confident in the use of the graphing tool, Ben became over-dependent

upon it.

This project was not intended or designed to establish causality

between the use of the software tools and aspects of cognitive

functioning by the participants. The experiences of the technology-rich
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algebra learning environment by both students and preservice teachers

were far too limited in relation to traditional mathematical learning

contexts to expect clear and attributable changes in skills or knowledge.

Even those students who engaged in the research programme for an

average of one hour per week over up to two school years spent between

four and five times that amount in their usual mathematics classes. It

is hardly surprising that the influence of the current mathematics

learning culture is so pervasive, and the effects of exposure to an

alternative learning environment so few.

Nonetheless, certain consequences of the use of the computer tools

could be identified from the data. The evidence of this study indicates

strong support for ways in which they may contribute to the learning

process, particularly through factors such as:

• increasing confidence in answers (and learning to expect that

such higher confidence rates should be the norm rather than the

exception);

• increasing the representational repertoire to include tables of

values, concrete forms and even animations;

• encouraging exploration and open-ended problem solving by

providing tools which facilitate and make possible these

approaches.

These three consequences of mathematical software use were

widespread among the participants, although varied in degree.

Certainly, all student participants indicated improved confidence in

their answers as a direct result of the use of computer tools, and all

demonstrated some measure of cross-representational facility across

symbolic, graphical and tabular forms. All engaged at some stage in
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strategic use of available tools for the exploration of mathematical ideas.

Such use was commonly associated with demonstrations of insight and

improved understanding of the mathematical ideas in question.

The responses of all participants reflected positive attitudes towards the

use of the computer as an aid to mathematics learning, although most

indicated some realistic limitations to their support. Overall, while the

graph plotter was enthusiastically accepted as a tool for mathematical

learning, the table of values was found to be difficult to interpret at

times, and computer algebra software was perceived as being in some

ways illegitimate. This is hardly surprising within a culture which

convinces students that the “best way to learn algebra” is through

repetition, and where the majority of students “prefer to learn the

teacher’s method for solving problems”.

A Grounded Theory of Mathematical Software Use

The grounded theory of mathematical software use developed through

this study situates such tool use within a context of:

(1) Algebraic and pedagogical thinking by the user,

(2) Familiarity with the software and subsequent access to

desired functions, and

(3) A learning environment which is both supportive and

challenging, encouraging the use of multiple strategies in

order to achieve agreed-upon mathematical goals.

Figure 9.3 provides a schematic outline of the relationship between the

various component parts of this theory.
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Figure 9.3: A grounded theory of mathematical software use:

Schematic outline

Causal Conditions
:

Mathematical situation 
and learning environment

“Learning to ask new questions”

Contextual 
Conditions:

Characteristics of:
• TOOL (interface and functionality
• LEARNING ENVIRONMENT
(challenge and support)

MATHEMATICAL 
SOFTWARE USE:

Properties:
•Purpose
• Goal-directedness
• Versatility
• Confidence
• Motivation

Dimensions:
• Non-use
• Passive
• Random
• Reflexive
• Strategic

Intervening 
Conditions:

Characteristics of the USER:
• algebraic thinking

- signal character
- preferred imagery
- repertoire of strategies

• pedagogic beliefs about algebra 
and the way in which it is best 
learned.

Action/Interaction Strategies

Most frequent:
• REPRESENTATION
• VERIFICATION

Least frequent:
• MANIPULATION
• EXPLORATION

CONSEQUENCES

• Increased confidence

• Improved representational repertoire

• Improved support for investigation and 
   open-ended problem solving

The learning environment gives rise to a mathematical situation, from

which the user must elicit a distinct algebraic object (most commonly

function, expression, equation, graph or table of values). Subsequent

use of mathematical software tools is dependent upon recognition by

the student of such an object.
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The user seeks to act upon the algebraic object in order to move

towards a desired state of closure. The repertoire of available

strategies is dependent upon both the strength of the signal character

of the algebraic object, and upon the extent to which computer-based

skills have been integrated with more traditional methods.

The action strategy taken at this stage (which may or may not involve

computer use) produces a result which must be evaluated in terms of

the extent to which it brings the problem situation closer to closure.

While the influence of the prevailing culture of mathematics learning is

likely to act against the use of software tools to assist manipulative

actions, tool use for purposes of verification of results appears not to

inspire the same resistance. Representational tool use, too (especially

involving the graphical representation), appears to complement existing

practice, while manipulative use directly confronts traditional

approaches.

Under conditions of strategic software use, the evaluative act is likely to

present to the user a new mathematical situation, requiring further

interpretation, action and reflection. Strategic use is characterised by

persistence, curiosity and the use of multiple strategies for both

exploration and evaluation of results. It frequently accesses multiple

representations and uses a range of available software tools. Such use

is goal-directed, flexible and frequently insightful.

Under conditions of high availability of tools, high demand for task

closure and extrinsic motivation, the use of available tools is likely to be

reflexive, as the user selects quickly and makes superficial use of

desired functions. Such use is commonly associated with use of the
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graph plotter as the preferred tool of choice and an environment which

rewards results rather than process. Reflexive tool use may be

discouraged by requiring active involvement on the part of the student,

particularly in the reconstruction and entry of algebraic forms.

Students must be participants, not observers, in the mathematical

process.

Under conditions of free orientation, random tool use may occur, as the

user experiments with available tools. Such use may be versatile, but it

is low in goal-directedness. Passive tool use occurs under conditions of

an imbalance of power between multiple users. While such use

commonly involves teacher (or tutor) and students, it may also be

observed between peers working together. The user in such a context

hands over the responsibility for learning to the active participant, and

is likely to gain much less from the experience than would an active

participant. This role is associated with the use of the computer as a

tool for demonstration (Ganguli, 1992).

Finally, there are conditions under which tool use is appropriate, and

yet no such action is taken. It was common for participants to express

lack of confidence in their answers, and yet to take no action to validate

or disprove their result. Students appeared to feel no personal

commitment regarding their involvement in algebra learning: motivation

is extrinsic and the demand for closure apparently far exceeds interest

or curiosity regarding the mathematical situation.

Within the constraints of the research design, the grounded theory

proposed offers the possibility of prediction regarding the likely use of
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mathematical software tools and the encouragement of strategic use

within algebra learning situations.

The principal uses of computer tools for mathematical purposes within

this study were found to be for representation (using graph plotter

and, less often, table of values) and verification of results. Although

well-suited to support open-ended investigation, such use is likely to

remain rare under the influence of a culture of learning which rewards

closure and identifies algebra with “finding an answer” using automated

and predetermined action sequences. Consequently, computer algebra

tools may best be introduced into the current mathematics curriculum

in two ways:

• As means of supporting students in the learning of sequential

mathematical procedures (such as equation solving in the

early years). Computer tools which both support and make

explicit the process provide a useful aid in such areas.

• As tools for supporting open-ended assessment tasks, and so

encouraging and motivating mathematical enquiry.

The evidence of this study suggests that teachers may encourage

strategic software use through the creation of a learning environment

within which:

• students are comfortable with the available software tools. The

interface should support ease of entry of mathematical forms

and make the range of mathematical functions clearly

available.

• mathematical tasks lie within the zone of proximal development

of the students. Students must perceive the task as potentially
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achievable, although beyond their present capabilities

unaided.

• students must be able to elicit from the task a mathematical

object which is capable of signalling appropriate action

strategies involving the integration of mathematical and

computer-based actions.

• open-ended investigation is perceived as a valid means of

achieving a solution, which may be only one of several

appropriate responses to the task.

• The use of multiple strategies for verification must be perceived

as a necessary component of mathematical enquiry.

• students must be motivated: persistence and some measure of

personal commitment to the solution process must be evident.

The strategic use of mathematical software tools is indicative, not only

of a high level of computer-based competence, but of insightful and

strongly connected mathematical thinking. Conditions under which

such use may be encouraged should be a feature common to all

mathematics learning situations.

Conclusion: Impediments, Imperatives and Implications

The grounded theory proposed appears both dense and integrated. As a

teacher learning to use new tools, I feel confident that the initial

demands of my action research enquiry have been satisfied. The

phenomenon has been examined in great detail, and situated within a

broader context: one involving images and definitions of algebra,

perceptions and beliefs about learning, recognition of the characteristics

of “good” algebra software and some appreciation of what a “technology-
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rich algebra learning environment” may look like. As the researcher and

prime motivator for this study, I feel confident in my new knowledge

and skills regarding “teaching with these new tools”. Always there is

more to know, but I recognise that at least now this teacher knows

enough to “get started”.

One of the most informative features of the study involved recognising

the formidable array of impediments to the use of mathematical

software tools for algebra learning. While readily recognising what might

be termed “institutional” constraints (particularly lack of access to

appropriate hardware and software) this study made it obvious that the

real impediments were buried deeper, within the psyche of mathematics

teaching as it has been practised in our society for one hundred and

fifty years. This impediment will be difficult to overcome, since it arises

from perceptions of the very nature of algebra, as it is found in schools.

For every impediment associated with the use of computer technology

in schools, there are a growing number of imperatives. From the

demands of society for a technologically-literate and mathematically

competent work force to the surprising wonders of chaos theory, the

symbiotic disciplines of mathematics and computing will continue to

cross paths again and again. As computer technology becomes ever

more accessible, appropriate and powerful as an environment for

learning, the possibilities it offers for improved understanding of

mathematical ideas and support for mathematical skill development

become impossible to ignore.

This study may be seen to have implications for a variety of audiences

with an interest in the role of technology in mathematics learning. For
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those interested in examining further the issues related to this critical

field of enquiry, the theory proposed here suggests many new questions.

At an individual level these include the effects of different computer

algebra tools upon the development of manipulative skills and

mathematical understanding, a more detailed examination of the role of

preferred imagery in algebra learning and its relationship with action

strategies, the transfer of meaning across representations and the

derivation of meaning from new representations made possible by

computer technology.

With the increasing power and availability of hand-held computers and

graphic calculators, issues of personal access to technology must also

be addressed. Students in the current study used their own calculators

effectively and often. As Smith (1992) proposed, the distinction between

a Social Constructivism model of tool use (in which the tool and the user

act jointly upon the mathematics “out there”) as opposed to an

Individual Constructivism model (in which both mathematics and tool

are “out there”) is relevant here. The calculator fitted comfortably within

the “personal space” of the user; the computer did not. In this study, it

remained “out there” and students failed to achieve the comfortable and

spontaneous familiarity with the computer tools which distinguished

their calculator use, even after protracted experience. It remains to be

seen whether hand-held computer tools capable of supporting algebraic

manipulation and multiple representations may be more readily

accepted and utilised.

At a classroom level, factors influencing the classroom use of computer

tools for mathematics learning must be considered, especially the role

of the computer in assisting group and cooperative approaches by
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making public both algebraic objects and processes. The physical

impediments associated with access to the technology for large groups

and the changing role of the teacher within a technologically-rich

learning environment are increasingly important considerations. Asp,

Dowsey and Stacey noted that teachers moved from an instructional to

a management role and tended to miss capitalising upon learning

opportunities as a result (Asp, Dowsey and Stacey, 1993, p. 53). At both

classroom and individual levels, the responses of teachers to technology

remain of critical importance. The decision to restrict the present study

to those engaged in algebra learning was a deliberate one, allowing a

necessary restriction of focus which would not have been possible

otherwise. Nonetheless, the next logical step from this study must be an

examination of the individual interactions of teachers with the

technology, and a close examination of the nature and influence of their

algebraic and pedagogical thinking upon tool use. Such a study offers

much in deepening and potentially verifying the present grounded

theory of mathematical software use.

Broader issues still relate to the influence of technology upon the

nature of learning and instruction. Trying to adapt the use of the

technology to fit the existing mathematics classroom may well be a

retrograde step: as demonstrated forcibly in this study, there are

fundamental incompatibilities between the effective use of technological

tools and the prevailing culture of mathematics learning and

instruction, at least as evident within this sample. If such tools are to

be used to their full advantage, then critical beliefs and assumptions

about the nature of algebra and the ways in which it is best learned,

and even of what constitutes effective learning and successful teaching

must be revised and, perhaps, sacrificed.
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For mathematical software developers, this study provides detailed

information by which software tools for mathematics learning may be

evaluated. This study provided an opportunity to gather, use and

evaluate a large collection of mathematical software tools. Very few of

those currently available satisfy the criteria developed through

interaction with the participants. There remain opportunities for the

creation of appropriate mathematical tools which support and

encourage mathematical enquiry, and potentially offer access to much

of mathematics which is interesting, relevant and important, but is

currently denied to the majority of students who “do not possess

adequate algebra skills”.

For teachers of mathematics, this study provides an opportunity to

share in the learning experience of a colleague. Before it is possible

teach effectively, it is necessary to have some understanding of the ways

in which individuals learn, and this study specifically provides such

information with regard, not only to the use of computer software tools,

but also in relation to the ways in which individuals perceive and act

upon algebraic forms, the influence of preferred algebraic imagery, and

beliefs and perceptions regarding learning. Further, the computer-based

instructional modules developed, trialed and evaluated within this

project provide practical ways in which teachers and students may

explore the use of computer tools for the learning of algebra. For

teacher educators, too, the modules provide a simulated algebra

learning environment in which preservice teachers may examine

alternative approaches to algebra teaching and learning made possible

through the use of software tools.
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This study offers powerful arguments for the use of appropriate

computer technology in the creation of an algebra learning environment

which emphasises meaningful contexts, the development of versatile

thinking about algebra through multiple representations, and a balance

between challenge and support. Mathematical software tools offer

unique opportunities for the development of algebra skills within a

context of improved understanding and active involvement by students

in their own learning. By making explicit both algebraic thinking and

processes, appropriate software encourages feedback, verbalisation and

cooperative approaches on the part of the learners, and supports

informed evaluation by the teacher.

Most important, however, is the possibility for exploration of

mathematical ideas supported and made possible by such tools. The

view of mathematics which follows from such an approach is one which

is vibrant and exciting. Not only are learners placed in positions of

responsibility and control regarding their own learning, and the

likelihood of learning with true understanding substantially heightened,

but, for perhaps the first time, teachers and students potentially

become co-learners in stretching the boundaries of their discipline.
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