

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 10

Scripting Tutorial - Lesson 10: Taking Shape Numbers Further

Download supporting files for this tutorial

Texas Instruments TI-Nspire Scripting Support Page

In lesson 9 we created a workable document for visualizing shape
numbers. Here we develop this document further using more of the
techniques we have learned. We will increase the choice of display
options, improve control over the document, and enhance the power
of the teaching tool by allowing students to control the building up of
each number for the different shapes.

Suppose instead of building up our shape patterns using grid lines,
we wished to use circles? Have a think about the changes we could
make to achieve this. In the sample document attached, we use a
slider (view) to switch between different views, and this is certainly
not too difficult to achieve (and will be left to you as an exercise in
calling variables and using If conditions). Here, for simplicity's sake,
we will replace the grid with circles.

Using circles to
create our shapes
requires only
relatively small
changes to our
script. In
particular, one
approach might
be to duplicate
our drawArray
function - call the
copy
drawCircles), and
replace the
various drawLine
commands with
drawArc. In fact,
in most respects,
it is easier to
create our pattern
using circles than
with gridlines.
One approach
might be to copy
and paste the
For...End loop
that creates each
of the three
shapes, then
replace the
multiple
drawLine
commands with
something like

function drawCircles(number, x, y, length, height,
gc)

types = (var.recall("type") or 1)

if types == 1 then

for k = 0, number - 1 do

for m = 0, number - 1 do

gc:fillArc(x +
(length)*(m),

y + (height)*(k),

length, height, 0,
360)

end

end

elseif types == 2 then

for k = 0, number - 1 do

those displayed
here.

You may notice
that both k and m
loops perform
one less cycle
than in the
gridline example
- can you see why
this should be so?
Study the code
and try to
understand it.
Run it and then
make changes to
observe their
effects.

I would even
suggest replacing
drawArc with
fillArc to give a
more striking
effect.

Finally, add an
additional line to
the on.paint
function to the
effect:

drawCircles(num,
x, y, xval, yval,
gc)

This could replace
the drawArray
call, or add to it
(placing circles
inside the grid
squares).

for m = 0, number
do

gc:fillArc(x
+
(length)*
(m),

y +
(height)*
(k),

length,
height, 0,
360)

end

end

else

for k = 0, number - 1 do

for m = k, number -
1 do

gc:fillArc(x
+
(length)*
(m),

y +
(height)*
(k),

length,
height, 0,
360)

end

end

end

end

Lesson 10.2: Building a Dynamic Display

It is now a very simple matter
to vary our script a little and to
use the filled circles within the
grid to actually show students
how each pattern builds, from

function on.paint(gc)

w =
platform.window:width()

term to term. At present, the
circles are filled in up to the
value of n, just as the grid is.
But suppose we introduce a
new variable called, say, tab,
which controls the number of
steps displayed by our circles?

Using exactly the same
on.paint as we did in lesson 9,
we add two additional lines -
shown here in boldface. The
first picks up the current value
of tab and stores it as a
dummy variable, tabs. This
then replaces the value of n as
the input to our drawCircles
function, and suddenly, as we
vary tab, our pattern builds,
step by step!

h =
platform.window:height()

num = (var.recall("n") or 1)

tabs = (var.recall("tab")
or 1)

xval =
math.floor(w/(num+4))

yval =
math.floor(h/(num+4))

x = w/2 - (num)*(xval)/2

y = h/2 - (num)*(yval)/2

gc:setPen("thin", "smooth")

gc:setColorRGB(165,42,42)

drawArray(num, x, y, xval,
yval, gc)

drawCircles(tabs, x, y,
xval, yval, gc)

end

Lesson 10.3: Finishing Up

All that remains now is fairly cosmetic.
Adding arrow controls will make the
document much easier to use on
computer and handheld, with no need
to interact at all with the sliders. In
fact, if it is not desired to use this
document with the TI-Nspire
Document Player, the window with the
sliders can actually be removed, after
this step.

I chose to use up and down arrows to
control the value of n, left and right
arrows to move between the three
types, and tab (as hinted) to increase
the value of circle building
demonstration. I also set up the esc
key to decrease this value of tab.

You should once again study the
sample script shown and make sure it
makes sense. In most of these
functions, it is wise to restrict the
possible values that the variable can
take. For example, pressing the down

function on.arrowDown()

num = (var.recall("n") or
1)

if num > 0 then

var.store("n",
num - 1)

else

var.store("n", 1)

end

end

function on.arrowUp()

num = (var.recall("n") or
1)

var.store("n", num + 1)

end

function on.arrowLeft()

types = (var.recall("type")
or 1)

arrow repeatedly will lead to values of
0 and less. See how this is dealt with.

Study the tab and scripts closely. See
how they work.

Finally, there is a missing ingredient
here if we want our script to run
effectively on the handheld, and not
just on the computer. The handheld
requires the window to be refreshed
frequently, in order to paint any
changes onto the screen. This may be
done in a variety of ways, but one
effective method involves beginning
your script with the following two
functions:

function on.timer()

platform.window:invalidate()

end

function on.create()

timer.start(1/5)

end

What these two functions do is to
force the screen to repaint five times
every second, thus capturing pretty
much any change that is likely to be
made, on handheld or computer. It is
a worthwhile safety inclusion for any
script you do where there are changes
being made to the display.

You may also wish to add some
dynamic text to raise the cognitive
stakes for the user. This is covered in
the example files, but you should be
well able to produce such text at this
point.

And with that, we conclude our
introductory Lua tutorial series.
Hopefully you will continue to explore
and extend your knowledge and your
ability to apply these techniques to
your own documents. Lua offers
much, much more than what we have
covered, and you are encouraged to
pursue further what we began here. If
you want to proceed a little further
along this path and learn how to use
mouse controls for your Lua
document, then feel free to move on
to the (slightly more) advanced
sequence of lessons, that begin with
Lesson 11.

if types > 1 then

var.store("type",
types - 1)

else

var.store("type",
1)

end

end

function on.arrowRight()

types = (var.recall("type")
or 1)

if types < num then

var.store("type",
types - 1)

else

var.store("type",
1)

end

end

function on.escapeKey()

tabs = (var.recall("tab") or
1)

if tabs > 0 then

var.store("tab",
tabs - 1)

else

var.store("tab",
1)

end

end

function on.tabKey()

tabs = (var.recall("tab") or
1)

if tabs < num + 1 then

var.store("tab",
tabs - 1)

else

var.store("tab",
1)

end

end

Home ← TI-Nspire Authoring ← TI-Nspire Scripting HQ ← Scripting Tutorial - Lesson 10

