Name

Class

Introducing the Integral Calculus: Integration by Substitution

In this activity, we explore ways to integrate harder functions using substitution methods which allow these to be transformed into one of the standard forms.

Open the file

TI-*NSpire*™

CalcActXX_Integration_By_Substitution_EN.tns on your handheld and follow along with your teacher to work through the activity. Use this document as a reference and to record your answers.

EXERCISES

- 1. Consider, for example, $\int \sqrt{2x+3}dx$. Suppose we let u = 2x+3. Can you evaluate the integral? Check using the spreadsheet provided.
- 2. Now try $\int \sin(x) \cdot \cos(x) dx$ [Let $u = \sin(x)$].
- Now try that same integral using *u* = *cos(x)*.
 What do you observe?
- 4. In fact, we could even approach

$$\int \sin(x) \cdot \cos(x) dx$$
 another way, since

$$\sin(x) * \cos(x) = \frac{1}{2}\sin(2x).$$

5. Now try
$$\int \frac{x+1}{x^2+2x+3} dx$$

8. Can you see what all these integrals have in common that makes them suitable for this method?

6. $\int \sin(x) * e^{\cos(x)} dx$

9. $\int \tan(x) dx$ 10. $\int \cos^3(x)$

1.1 1.2 1.3 1.4 RAD AUTO REAL

Î

Sometimes, the challenge of integrating certain functions can be made easier using an appropriate substitution.

The challenge then becomes recognizing those integrals which are suitable for this method!

	1.1	1.2	1.3	1.4	▶RAD	AUTO	REA	L	Î
	A			В				С	
٠									
1	f(x)	f(x) =			*x+3)				
2	u =			2*x+	-3				
3	du =						2	1	
4	f(u)du =			√ (u))/2			1	
5	∫f(u)du =			u^(3)	12)/3			1	
	A7	"f(x)	="						

7. $\int \frac{x}{4x^2+1} dx$

TI-*nspire*™

SUGGESTED SOLUTIONS

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} 1.3 & 1.4 & 2.1 & 2.2 \\ \hline \text{RAD AUTO REAL} \end{array} \end{array} \\ \hline \begin{array}{c} 1. & \text{fu} = 2x + 3 & \text{then } \text{du} = 2dx >> \\ \hline \int \sqrt{2x + 3} & \text{dx} = \frac{1}{2} \int \frac{1}{u^2} & \text{du} = \frac{1}{3} \frac{3}{u^2} + C \\ \hline \int \sqrt{2x + 3} & \text{dx} = \frac{1}{2} \int \frac{1}{u^2} & \text{du} = \frac{1}{3} \frac{3}{u^2} + C \\ \hline \int \sqrt{2x + 3} & \text{dx} = \frac{1}{3} (2x + 3) \cdot \sqrt{2x + 3} + C \\ \hline \int \sqrt{2x + 3} & \text{dx} = \frac{1}{3} (2x + 3) \cdot \sqrt{2x + 3} + C \\ \hline \end{array} \end{array} \\ \hline \begin{array}{c} 114 & 21 & 22 & 23 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 21 & 22 & 23 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 21 & 22 & 23 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 21 & 22 & 23 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 21 & 22 & 23 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 21 & 22 & 23 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 21 & 22 & 23 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 21 & 22 & 23 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 21 & 22 & 23 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 21 & 22 & 23 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 21 & 22 & 23 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 125 & \sin(x) \cdot \cos(x) \, dx = \frac{1}{2} \cos(x)^2 + C_3 \\ & \int \sin(x) \cdot \cos(x) \, dx = \frac{-1}{4} \cos(2x) + C_3 \\ & \int \sin(x) \cdot \cos(x) \, dx = \frac{-1}{4} \cos(2x) + C_3 \\ & \int \sin(x) \cdot \cos(x) \, dx = \frac{-1}{4} \cos(2x) + C_3 \\ & \int \sin(x) \cdot \cos(x) \, dx = \frac{-1}{4} \cos(2x) + C_3 \\ & \text{which is yet another form which is only a \\ & \text{onstant value away!} \end{array} \end{array}$$
 \\ \hline \end{array} \\ \hline \begin{array}{c} 122 & 22 & 22 & 24 & 31 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 31 & 32 & 41 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 31 & 32 & 41 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 31 & 32 & 41 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 31 & 32 & 41 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 31 & 32 & 41 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 21 & 22 & 22 & 24 & 31 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 31 & 32 & 41 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 31 & 32 & 41 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 31 & 32 & 41 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 31 & 32 & 41 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 31 & 32 & 41 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 31 & 32 & 41 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline \begin{array}{c} 124 & 31 & 32 & 41 \end{array} \right) \text{RAD AUTO REAL} \end{array} \\ \hline

TI-*nspire*™

Getting Started with Calculus

	4.2 5.1 5.2 5.3 ▶RAD AUTO REAL
Answer 🏼 🎽	for this method?
7. Let $u = 4x^2 + 1$, then $\mathbf{du} = 8x \cdot dx$	Answer 🛛
$\int \frac{x}{4x^2 + 1} dx = \frac{1}{8} \int \frac{1}{u} du = \frac{1}{8} \ln(u) + C$	Each contains the derivative of the substitution element: if "u" is the
$\int \frac{x}{4x^2 + 1} dx = \frac{1}{8} \ln(4x^2 + 1) + C$	expression, or at least a constant multiple of it.
Answer 🎽 🗖	$ 10. \int \cos(x)^3 dx = \int \cos(x) \cdot \cos(x)^2 dx = \square$
$\oint \int \tan(x) dx = \int \frac{\sin(x)}{\cos(x)} dx$	$\int (1 - \sin(x)^2) \cdot \cos(x) dx$ Let $u = \sin(x)$ then $\mathbf{du} = \cos(x) \cdot dx$
Let $u = \cos(x)$ then $\mathbf{du} = \sin(x) \cdot dx$	C
$\int \frac{\sin(x)}{\cos(x)} dx = \int \frac{1}{u} du = \ln(u) + C$ $\int \tan(x) dx = \ln(\cos(x)) + C$	$\int \cos(x)^3 dx = \int 1 - u^2 du = u - \frac{u^2}{3} + C$ $\int \cos(x)^3 dx = \frac{3\sin(x) - \sin(x)^3}{3} + C$