

<i>bire</i>

Applications of Calculus: Simple Harmonic Motion ID: xxxx

Name	
Class	

In this activity, we explore the application of both differentiation and integration to the real world as applied to motion on a swing.

Open the file

CalcActXX_Simple_Harmonic_Motion_EN.tns on your handheld and follow along with your teacher to work through the activity. Use this document as a reference and to record your answers.

EXERCISES

- Study the motion of the particle P shown. Carefully describe the motion of this particle over time.
- 2. What general function could be given to describe the position *x* of **P** at any time *t* seconds?
- 3. When on a swing, focus upon your speed: when are you moving fastest? When do you stop?
- 4. Now focus upon the force acting upon you once you start swinging, there is only one force acting: gravity, pulling downwards. When is this action greatest? When least?

- 5. Motion is defined to be simple harmonic if the acceleration is directly proportional to displacement from the origin. Clearly explain what this statement means.
- 6. Use the **displacement** equation $x = a \cdot \sin(n \cdot t)$ to derive a formula for **velocity**.
- 7. From this equation, derive a formula for **acceleration** in terms of **time**.
- 8. Now substitute the formula for **displacement** into this **acceleration** formula.

- 9. In your own words, clearly explain how this formula relates to our motion on a swing.
- 10. Referring to the graphs of motion you have seen, carefully describe the critical points of this motion in terms of displacement, velocity and acceleration.

EXTENSIONS

<u>TI-*NS*pire</u>™

- Ex1 Find other examples of simple harmonic motion and try to analyze these in the same way as we have for the child on a swing.
- Ex2 Carefully study the following, then explain and justify each statement:

$$\circ \quad a = \frac{d^2}{dt^2}(x) = \frac{dv}{dt}$$
$$\circ \quad a = v \cdot \frac{dv}{dx}$$

- Ex3 Show that $\int v \cdot \frac{dv}{dx} dx = \frac{1}{2}v^2$ Use these results to derive the SHM formulas.
- Ex4 When might it be appropriate to express the time/displacement form using cosine instead of sine?

TI-*nspire*™

SUGGESTED SOLUTIONS

	Î	1.2 1.3 1.4 1.5 ▶RAD AUTO REAL	Î
		Answer 🛛 👻	
1. The motion is cyclic – initially negative (moving towards the origin, O) then positive. Velocity reaches a maximum value in the middle and is zero at end–points A and B.		2. Let OA = OB = a (amplitude) and assume the particle traces out n cycles per second (<i>period</i> = $\frac{2\pi}{time \ per \ cycle}$). Then $x = a \cdot \sin(n \cdot t)$.	
		1.5 1.6 1.7 1.8 ▶RAD AUTO REAL	Î
3. Focus first upon your speed: when are you moving fastest? When do you stop?		force acting: gravity, pulling downwards. When is this action greatest? When least?	
Answer 🛛 🕹		Answer 🛛 🛛 🕹	
3. You move fastest as you pass through the centre of the swing's path, and you stop (briefly) at each end of the path – just as our point P!		4. Gravity will be greatest when you are furthest from the ground – at each end of the path. It will be least when you are at your lowest point, in the middle.	
	Î		Î
Answer 🛛 💝		6. Use the displacement equation to derive a formula for velocity.	
5. If the origin of motion is taken to be the centre of the swing's path (where		Answer 📓	
acceleration/force is least) then the further		6. If $x = a \cdot \sin(n \cdot t)$ then	
greater the acceleration/force acting upon you trying to return you to that position.	×	$\nu = \frac{dx}{dt} = a \cdot n \cdot \cos(n \cdot t)$	2

TI-*nspire*™

Getting Started with Calculus

TI-*nspire*™

2.1 2.2 2.3 2.4 RAD AUTO REAL	2.5 2.6 2.7 2.8 RAD AUTO REAL	Î
Question	Answer 🛛 🛛 🕅	
EX3. Show that $\int v \frac{dv}{dx} dx = \frac{1}{2}v^2$	Ex4. Depending on where the motion began: if x = 0 when t = 0, then sine is most appropriate.	
Answer 🛛 💝	However, if the motion began from one of	
$E x \Im \int a dx = \int v \cdot \frac{dv}{dx} dx = \int v dv = \frac{1}{2}v^2$	the end points (someone pulling the swing back before releasing) then cosine would be the better choice!	Y